Effect of Rice Bran Biochar, Mixed and Enriched with Triple Superphosphate, on the Availability of Phosphorus and Growth of Corn

Document Type : Research Paper

Authors

1 MSc.,Soil and Water Department, Faculty of Agriculture, Shahrood University of Technology

2 Associate Professor, Soil and Water Department, Faculty of Agriculture, Shahrood University of Technology

3 Associate Professor, Agronomy Department, Faculty of Agriculture, Shahrood University of TechnologyShahrood University of Technology

Abstract

Application of organic fertilizers such as biochar is one of the most effective techniques to avoid immobilization of P chemical fertilizers in soils. In order to evaluate the effect of rice bran biochar (produced at 550º C) alone, biochar mixed with P, and that enriched with P on some chemical properties of soil and yield of corn plant, a field experiment was conducted based on a completely randomized design with 7 treatments and 3 replications. The treatments included a control, triple superphosphate (350 kg ha-1 TSP), biochar at 2 levels (2 and 4 t.ha-1), biochar enriched with TSP (2 and 4 t.ha-1 biochar enriched with, respectively, 350 and 700 kg TSP), and 2 ton ha-1 biochar mixed with 350 kg TSP. To determine the chemical properties of soil and yield of corn, soil sampling was done three times during the growing season while plants were sampled 120 days after sowing. The results revealed that pH value decrease and soluble and available phosphorus increased in almost all treatments including biochar. The biochar with TSP was the best treatment (soluble and available P increased by 190% and 105%, respectively, compared to the control).  Grain yield was the lowest in the control (9.1 t.ha-1) and the highest in 4 t.ha-1 biochar enriched with TSP (15.9 t.ha-1). The treatment including 4 t.ha-1 biochar showed the highest P concentration in corn root (0.47%) and grain (0.79%). It is concluded that although TSP alone was able to increase available P in the soil, but its effects will decrease in longer times. Application of biochar mixed with TSP had the best effect on the P availability and its uptake by the plant. In general, for soils with low content of  P and organic matter, treatment of 4 t.ha-1 biochar enriched with 700 kg TSP is recommended to obtain the highest grain yield. However, environmental issues caused by the overuse of phosphorus fertilizers and the costs imposed on farmers must be considered.

Keywords

Main Subjects


  1. احسانی نژاد، آ.، ع. عباس پور و ح.ر. اصغری و ح.ر. صمدلویی. 1396. تأثیر قارچ آسپرژیلوس نایجر و کود سبز بر انحلال فسفر خاک در شرایط انکوباسیون. نشریه آب و خاک 31 (2): 608-597.
  2. رحیمی، ط.، ع. معزی و س. حجتی. 1397. اثر مقادیر بیوچار و نیکل بر غلظت نیکل و برخی عناصر کم مصرف در ذرت. نشریه پژوهشهای خاک 32(4): 537-527.
  3. زلفی باوریانی، م.،ع. رونقی، ن. کریمیان، ر. قاسمی، و ج. یثربی. 1395. اثر بیوچار تهیه شده از کود مرغی در دماهای متفاوت بر ویژگیهای شیمیایی یک خاک آهکی. نشریه علوم آب و خاک 75 (20):86-73.
  4. ضیائیان، ع.، ا. مرادی، غ. زارعیان و م. حسینی. 1398. نقش تلقیح قارچ میکوریزا و کاربرد بیوچار بر فراهمی فسفر، رشد و عملکرد سورگوم و برخی خصوصیات شیمیایی خاک. نشریه پژوهش های خاک 33 (4): 484-473.
  5. میرباقری، ا.، ع. عباس پور، ع. روحانی، و ه. قربانی. 1391. ارزیابی وضعیت فسفر در برخی مزارع سیب زمینی منطقه مجن در استان سمنان. نشریه پژوهشهای خاک 26(3): 243-235.
  6. Abbas, A., Azeem, M., Naveed, M., Latif, A., Bashir, S., Ali, A., Bilal, M., Ali, L., 2020. Synergistic use of biochar and acidified manure for improving growth of maize in chromium contaminated soil. Int. J. Phytoremediation 22, 52–61.
  7. Abbaspour, A., Zohrabi, F., Dorostkar, V., Faz, A., Acosta, J.A., 2020. Remediation of an oil-contaminated soil by two native plants treated with biochar and mycorrhizae. J. Environ. Manage. 254, 109755.
  8. Abrishamkesh, S., Gorji, M. Asadi, H. Bagheri-Marandi, G.H., Pourbabaee, A.A. 2015. Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant Soil and Environment 61(11):475-482.
  9. Almaroai, Y.A., Eissa, M.A., 2020. Effect of biochar on yield and quality of tomato grown on a metal-contaminated soil. Sci. Hortic. (Amsterdam). 265, 109210.
  10. Anderson, C.R., Condron, L.M., Clough, T.J., Fiers, M., Stewart, A., Hill, R.A., Sherlock, R.R., 2011. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia (Jena). 54, 309–320.
  11. Badrloo, T.A., Nobariyan, M.R.S., Bostani, A., Ghorbani, H., Abbaspour, A., 2016. Solubility and phytoavailability of phosphorus and lead in a contaminated soil amended with two phosphorus fertilizers. Commun. Soil Sci. Plant Anal. 47, 1967–1974.
  12. Ball, P.N., MacKenzie, M.D., DeLuca, T.H., Montana, W.E., 2010. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. J. Environ. Qual. 39, 1243–1253.
  13. Chen, T., Luo, L., Deng, S., Shi, G., Zhang, S., Zhang, Y., Deng, O., Wang, L., Zhang, J., Wei, L., 2018. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresour. Technol. 267, 431–437.
  14. Cui, H.-J., Wang, M.K., Fu, M.-L., Ci, E., 2011. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J. Soils Sediments 11: 135-141.
  15. Ennis, C.J., Evans, A.G., Islam, M., Ralebitso-Senior, T.K., Senior, E., 2012. Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Crit. Rev. Environ. Sci. Technol. 42, 2311–2364.
  16. Fahad, S., Hussain, S., Saud, S., Hassan, S., Tanveer, M., Ihsan, M.Z., Shah, A.N., Ullah, A., Khan, F., Ullah, S., 2016. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol. Biochem. 103, 191–198.
  17. Farrell, M., Kuhn, T.K., Macdonald, L.M., Maddern, T.M., Murphy, D. V, Hall, P.A., Singh, B.P., Baumann, K., Krull, E.S., Baldock, J.A., 2013. Microbial utilisation of biochar-derived carbon. Sci. Total Environ. 465, 288–297.
  18. Farrell, M., Macdonald, L.M., Butler, G., Chirino-Valle, I., Condron, L.M., 2014. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol. Fertil. soils 50, 169–178.
  19. Gee, G. W., and Bauder, J. W. 1986. Particle-size analysis. In: Methods of Soil Analysis. Part 1. Physical and mineralogical methods, Klute, A. (Ed.). Soil Sci. Soc. Am., and Am. Soc. Agro., Madison, WI. pp. 383-410.
  20. Kim, J.A., Vijayaraghavan, K., Reddy, D.H.K., Yun, Y.S., 2018. A phosphorus-enriched biochar fertilizer from bio-fermentation waste: a potential alternative source for phosphorus fertilizers. J. Clean. Prod. 196, 163–171.
  21. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D., 2011. Biochar effects on soil biota–a review. Soil Biol. Biochem. 43, 1812–1836.
  22. Li, H., Li, Y., Xu, Y., Lu, X., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244, 125471.
  23. Loeppert, R. H., and Suarez, D. L. 1996. Carbonate and gypsum. In: Methods of Soil Analysis. Part 3. Chemical methods, Sparks, D. L. (Ed.). Soil Sci. Soc. Am. and Am. Soc. Agro., Madison, WI. pp. 437-474.
  24. Major, J., Rondon, M., Molina, D., Riha, S.J., Lehmann, J., 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333, 117–128.
  25. Marks, E.A.N., Alcañiz, J.M., Domene, X., 2014. Unintended effects of biochars on short-term plant growth in a calcareous soil. Plant Soil 385, 87–105.
  26. Motaghian, H., Hosseinpur, A., Safian, M., 2019. The effects of sugarcane-derived biochar on phosphorus release characteristics in a calcareous soil. J. Soil Sci. Plant Nutr. 1–9.
  27. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27: 31–36
  28. Nelson, D. W. and L. E. Sommers. 1996. Total carbon, organic carbon and organic matter. In Sparks, D. L. (ed.) Methods of soil analysis. Part 3. 3rd ed. SSSA, ASA Madison, WI. PP: 961-1010
  29. Rafique, M., Ortas, I., Rizwan, M., Chaudhary, H.J., Gurmani, A.R., Munis, M.F.H., 2020. Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils. Chemosphere 238, 124710.
  30. Rajan S.S.S., Brown, M.W., Boyes, M.K., Upsdell, M.P. 1992. Extractable phosphorus to predict agronomic effectiveness of ground and unground phosphate rocks. Nutr Cycl Agroecosys 32:291–302.
  31. Rehman, R.A., Rizwan, M., Qayyum, M.F., Ali, S., Zia-ur-Rehman, M., Zafar-ul-Hye, M., Hafeez, F., Iqbal, M.F., 2018. Efficiency of various sewage sludges and their biochars in improving selected soil properties and growth of wheat (Triticum aestivum). J. Environ. Manage. 223, 607–613.
  32. Singh, R., Singh, P., Singh, H., Raghubanshi, A.S., 2019. Impact of sole and combined application of biochar, organic and chemical fertilizers on wheat crop yield and water productivity in a dry tropical agro-ecosystem. Biochar 1, 229–235.
  33. Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. 1996. Methods of soil analysis. Part 3: chemical methods. Soil Science Society of America, Madison
  34. Thomas, G. W. 1996. Soil pH and soil acidity. In: Methods of Soil Analysis. Part 3. Chemical methods. Sparks, D. L., (Ed.). Soil Science Society of America Journal and American Society Agronomy, Madison, WI. pp. 475-490.
  35. Vaccari, F.P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., Miglietta, F., 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur. J. Agron. 34, 231–238.
  36. Vance, C.P., Uhde‐Stone, C., Allan, D.L., 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423–447.
  37. Warnock, D.D., Lehmann, J., Kuyper, T.W., Rillig, M.C., 2007. Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 300, 9–20.
  38. Watanabe, F. R., Olson, S. R. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. proc. 29:677-678.
  39. Zhang, H., Shao, J., Zhang, S., Zhang, X., Chen, H., 2019. Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil. J. Hazard. Mater. 121349.
  40. Zhang, X., Li, H., Li, M., Wen, G., Hu, Z., 2019. Influence of individual and combined application of biochar, Bacillus megaterium, and phosphatase on phosphorus availability in calcareous soil. J. Soils Sediments 19, 3688–3698.
  41. Zheng, H., Wang, Z., Deng, X., Herbert, S., Xing, B., 2013. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206, 32–39. https://doi.org/10.1016/j.geoderma.2013.04.018