Evaluation of chemical extractants and determination of the potassium critical level in soils under the bean cultivation

Document Type : Research Paper

Authors

1 Academic Member, Markazi Agricultural and Resources Research and Training Center

2 Academic Member, Markazi Agricultural and Resources Research and Training Center, AREEO, Arak, Iran

3 Academic Member, Soil and Water Department, Khorasan Razavi Agricultural and Resources Research and Training Center,AREEO, Mashhd, Iran

Abstract

Soil tests play a very important role in management of nutrients in the field. The efficiency of a soil test result depends on extractant suitability for determination of available nutrient. Also, for calibration of each nutrient in the soils of a specific region and plant, a critical limit should be determined so that the soil test for each element can be the basis of fertilizer recommendation. Bean (Phaseolus vulgaris L.) is important agricultural product due to high protein. Due to the lack of relevant information in this field, this study was conducted on bean soils in Markazi province. 30 samples of surface soil (0-30cm) with a wide range in terms of available potassium, as well as physical and chemical properties were selected from the bean cultivation soils of the Markazi province and after preparing soil samples in the greenhouse, beans were planted in them.In order to evaluate the response of bean to potassium fertilizer application, two levels of 0 and 100 mgKkg-1 were used as potassium sulfate in this experiment. The greenhouse experiment was performed in a completely randomized design with three replications. At the end of the growing season, harvested plants and plant responses including dry matter weight,  potassium concentration and uptake, and relative growth were determined. Six extractants including distilled water, hydrochloric acid 0.13M, nitric acid 0.5M, calcium chloride 0.025M, Olsen and ammonium acetate 1M were evaluated to extraction of available potassium. The results of analysis of variance showed that the main effects of soil and potassium fertilizer were significant (p<0.01) on dry matter weight, potassium concentration and uptake. But the effect of soil and fertilizer interaction was significant only on plant potassium concentration.Comparison of the mean showed that the effect of potassium fertilizer application were significant on plant responses.The results of correlation coefficient of different extractants with plant responses showed that ammonium acetate (1M) had a positive and significant correlation with plant potassium concentration (0.67**) and uptake (0.63**) while other extractants did not show a significant correlation.Using the Cate and Nelson visual method, the potassium critical level was obtained 150 mgkg-1 soil by extracting with ammonium acetate. Dry matter weight had a positive and significant correlation with available potassium concentration, cation exchange capacity, clay and sand. Plant potassium concentration and uptake had a positive and significant correlation with available potassium concentration (r=0.555**) and soil organic carbon (r = 0.620*).

Keywords

Main Subjects


  1. خودشناس، م. ع.، ج. قدبیک لو، و م. دادیور. 1396. حد بحرانی آهن برای لوبیا در استان مرکزی. مجله آب و خاک:31(4): 1158-1148.
  2. خودشناس، م. ع. و م. دادیور . 1384. بررسی پراکنش وضعیت عناصر غذایی در خاک‌های زیر کشت لوبیا استان مرکزی. مقالات اولین همایش ملی حبوبات. دانشگاه فردوسی مشهد.
  3. شریفی، مهدی . 1377. انتخاب عصاره گیر مناسب جهت استخراج پتاسیم قابل‌جذب برای گیاه ذرت در خاک‌های منطقه مرکزی استان اصفهان ، پایان‌نامه کارشناسی ارشد رشته خاکشناسی، دانشگاه صنعتی اصفهان ، اصفهان، ایران.
  4. قنبری، ع.، م. مفتون، و ن. ع. کریمیان. 1378. تأثیر فسفر بر رشد و ترکیب شیمیایی ذرت در تعدادی از خاک‌های آهکی استان فارس. ششمین کنگره علوم خاک ایران . دانشگاه فردوسی مشهد.
  5. ملکوتی، م. ج. و م. ن. غیبی. 1379. تعیین حد بحرانی عناصر غذایی مؤثر در خاک، گیاه و میوه. نشر آموزش کشاورزی. 92 صفحه.
  6. موسسه تحقیقات خاک و آب. 1379. راهنمای کالیبراسیون آزمون خاک جهت توصیه کودی. نشریه فنی شماره 1104.
  7. میرزا وند، ج. و م. مفتون . 1378 . ارزیابی گلخانه ایی برهمکنش فسفر و روی بر رشد و ترکیب شیمیایی برنج در سه خاک آهکی و ماندابی در فارس. ششمین کنگره علوم خاک ایران . دانشگاه فردوسی مشهد.
  8. Aini, N., and C. Tang. 1998. Diagnosis of potassium deficiency in faba bean and chickpea by plant analysis . Aust. J. Exper. Agric. 38: 503-509.
  9. Allison, L.E., and C.D. Moodie. 1965. Carbonate. p. 1379-1396. In C.A. Black (ed), Methods of Soil Analysis. Part 2. Am. Soc. Agron, Inc., Madison, Wis, USA.
  10. Bargaz, A., M. Faghire, N. Abdi, M. Farissi, B. Sifi, J. Drevon, M. Ikbal and C. Ghoulam. 2012.   Low soil phosphorus availability increase acid phosphatases activities and affects P partitioning in nodules , seeds and rhizosphere of pgaseolus vulgaris. Agri. 2: 139-153. Doi:10.3390/agriculture2020139.
  11. Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J. 54: 464-465.
  12. Brennan, R.F., M.D.A. Bolland, and K.H.M. Siddique. 2001. Response of cool-season grain legumes and wheat to soil applied zinc. j. Plant nutr. 24: 727-741.
  13. Campbell, C. R. and C. O. Plank. 1998. Preparation of plant tissue for laboratory analysis. In Handbook of reference methods for plant analysis, Edited by: Kalra, Y. p. 37–49. Boca Raton, Fl: CRC Press.
  14. Cate, R.B.Jr, and L.A. Nelson. 1971. A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Sci. Soc. Am. Proc. 35: 658-660.
  15. Franzen, D.W.,  and J. Morghan. 1995. Fertilizing pinto Navy and other dry edible bean. [online] Available: http:// www. ext. nodak. edu/extpubs/plantsci/soilfert/sf720.htm.
  16. Haby, V. A., M.P. Russelle, and E.O. Skogley. 1990. Testing soils for potassium, calcium , and magnesium. p. 181-227. In R.L. Westerman (ed.) Siol testing and plant analysis. 3rd Ed. Siol Sci. Soc. of America, Madison, WI.
  17. Hosseinpur, A.R., and M. Zarenia. 2012. Evaluating chemical extractants to estimate available potassium for pinto beans (Phaseolus vulgaris L.) in some calcareous soils. Plant Soil Environ. 58: 42–48.
  18. Hosseinpur, A.R., and M. Samavati. 2007. Evaluation of Chemical Extractants for the Determination of Available Potassium.  [on line] Available:  https://doi.org/10.1080/00103620802006693.
  19. Ibrahim, H.A.,  U.A. El-Behairy, M. EL-Desuki, M.O. Bakry, and A.F. Abou–Hadid. 2010. Research J. Agri. Bio. Sci. 6: 834-839.
  20. Kaiser, D.E., and C.J., Rosen. 2018. Potassium for crop production. University of Minnesota extension. [on line] Available: https://extension.umn.edu/phosphorus-and-potassium/potassium-crop-production.
  21. MacLean, A. J. 1961. Potassium-supplying power of some Canadian soils. Can. J. Soil Sci. 41: 196–206.
  22. Maftoun, M., M.A.Khodshenas., and A.S.Gholami. 2009. Assessment of chemical extractants to predict available potassium for rice in calcareous soils. Agrochimica. 53: 284-295.
  23. Marx, E.S., j. Hart, and R.G. Stevens. 1999. Soil test interpretation guide. Oregan State University Service. Ec 1478.
  24. Mckenzie, R.H., A.B. Middleton, K.W. Seward, R.Gaudiel, C. Wildschut, and E. Breme. 2001. Fertilizer responses of dry bean in southern alberta. Can. j. Plant Sci. 81: 343- 350.
  25. Nath, A.K., and S. Purkaystha. 1988. A study on soil test and crop response in respect to potassium in acid alluvial soils of assam. J. Indian Soc. Soil Sci. 36: 120-124.
  26. Olsen, S. R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular 939, p. 19. Washington, DC US Department of Agriculture.
  27. Panda, R., and  S., K. Patra. 2018. Assessment of Suitable Extractants for Predicting Plant-available Potassium in Indian Coastal Soils. Commun. Soil Sci. Plant Anal. 49: 1157-1167.
  28. Peech, M. 1965. Hydrogen ion activity. p. 914-925. In C.A. Black (ed), Methods of Soil Analysis. Part 2. Am. Soc. Agron, Inc., Madison, Wis, USA.
  29. Rehm, G., M. Schmitt, and R. Eliason. 1997. Fertilizer recommendation for edible beans in Minnesota. University of Minnesota Extension Service. Fo-6572-Goo.
  30. Reitemeier, R. F., Holmes, R. S., Brown, I. C., Klipp, L. W., Parks,. R. Q. 1947. Release of nonexchangeable potassium by greenhouse, Neubauer, and laboratory method. Soil Sci. Soc. Am. Proc. 12: 158-165.
  31. Rhoades, J. D. 1996. Electrical Conductivity and Total Dissolved Solids. P. 417-436. In J. M. Bigham(ed.). Methods of Soil Analysis. Madison, Wisconsin, USA.
  32. Schild, J., D. Nuland, G. Hergert, B. Wilson. 1996. Fertilizer management for dry edible beans. Nebguide. G92-1102- A.
  33. Sims, T.J. 2000. Soil fertility evaluation. P.D113-D153. In M.E. Sumner (ed.) Handbook of soil science. CRC press llc.
  34. Stevens, JB., P.S. van Heerden., P. Reid., A. Liebenberg., E. Hagedoorn., and G. de Kock. 2012. Training material for extension advisors in irrigation water management. WRC REPORT NO. TT 540/8/12. University of Pretoria.
  35. Sutton, P. and Seay, W. A. 1958. Relationship between the potassium removed by millet and red clover and the potassium extracted by four chemical methods from six Kentucky soils. Soil Sci. Soc. Am. Proc. 22: 110–115.
  36. Tisdal, S.L., W.L. Nelson, and J.D. Beaton. 1985. Soil fertility and fertilizers. 4 th.ed., Mc Millan  Publishing co., New York, NY.
  37. Tiwari, A., K.N. Tiwar, and S.G. Misra. 1995. Soil test methods and critical limits of potassium in soil and plants for wheat grown in Typic Ustochrepts. J. Indian. Soc. Soil Sci. 43: 408-413.
  38. Walkley, A. and I.A. Black. 1934. An Examination of Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 37: 29-37.
  39. Wondimu W., and T. Tana. 2017. Yield Response of Common Bean (Phaseolus vulgaris L.) Varieties to Combined Application of Nitrogen and Phosphorus Fertilizers at Mechara, Eastern Ethiopia. J Plant Biol Soil Health.;4(2): 7.