Investigation of the Uptake of Heavy Metals in Waste Leachate by Vetiver from a Contaminated Soil

Document Type : Research Paper

Authors

1 Department of Environment, Department of Environment, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran

2 Department of Environment, Islamic Azad University, Research Sciences Branch, Tehran, Iran

Abstract

The aim of this study was to evaluate the potential of uptake of lead, cadmium, manganese and nickel from municipal waste leachate by Vetiver under greenhouse conditions. This research was based on a completely randomized design in three replications with four treatments, including waste leachate with concentrations of 0, 30%, 60%, and 100%. The plants were irrigated at optimum temperature conditions for vetiver (23-23 °C) and based on water requirement for 5 months and 4 watering per week, each time using one liter of leachate. The results showed that there was a significant difference at the level of 1% in the uptake of heavy metals by the plant. Also, with the increase of leachate treatment levels to 60%, there was a significant difference at the level of 1% in root and shoot length. Then, in the treatment with 100% leachate, root and shoot length were significantly reduced. With increasing levels of leachate treatment, the uptake of heavy metals by the plant increased. The highest uptake was by the root with a total average of 200.21 mg /kg in all four treatments. The highest amount of adsorption was related to manganese, lead, nickel and cadmium with averages of 70.70, 52.73, 44.56, and 32.22 mg/kg, respectively. In the shoot, the average of the total uptake of the four elements was 147.93 mg/kg, with the highest averages belonging to manganese, lead, nickel, and cadmium as 53.18, 38.35, 35.13, and 21.27 mg/kg, respectively. The maximum uptake of the four heavy metals in the roots and shoots was related to the treatment with 100%. Also, for all elements in all treatments, the biological concentration factor (BCF) was >1 and the transfer factor (TF) was <1. The results showed that the plant was able to absorb significantly higher amounts of heavy metals at higher concentrations of leachate. Since roots showed greater uptake of the heavy metals in waste leachate than shoots, vetiver plant can act as a phytostablizer and reduce heavy metals mobilization in polluted soil.
 

Keywords

Main Subjects


  1. نادری، م ر.، ع. دانش شهرکی و ر. نادری. مروری بر گیاه پالایی خاک های آلوده به فلزات سنگین. فصلنامه انسان و محیط زیست.، 4 (23): 49-35.
  2. منصوریان، ع ر.، آ. وزیری، م. زمانی، و ف. حیدریان نایینی. 1396. بررسی گیاه­پالایی خاک های آلوده به سیانید با استفاده از گیاه وتیوریا زیزانیاوایدس  (Vetiveria zizanioides). مجله سلامت و محیط زیست، فصلنامه­ی علمی پژوهشی انجمن علمی بهداشت محیط ایران، 10 (3): 411-420.
  3. قائمی، ع آ.، ف. .مجدالدین. 1395. بررسی گیاه­پالایی وتیور و اکالیپتوس در جذب برخی فلزات سنگین از فاضلاب در خاک آلوده به شیرابه زباله. مجله مهندسی منابع آب، 9 (28): 106-95.
  4. Anning, A. K., R. Akoto. 2018. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. – Ecotoxicology and Environmental Safety. 148: 97-104.doi: 1016/j.ecoenv.2017.10.014.
  5. Arduini, I., D. L. Godbold., and A. Onnis. 1994. Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiologia plantarum. 92(4): 675-680.‏
  6. Chaoui, A., and E. El Ferjani. 2005. Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings.Comptes rendus biologies. 328(1): 23-31
  7. Effendi, H., B. A.Widyatmoko Utomo., N. T. M. Pratiwi. 2020. Ammonia and orthophosphate removal of tilapia cultivation wastewater with Vetiveria zizanioides. 32(1): 207-212. org/10.1016/j.jksus.2018.04.018.
  8. Kafil, M., Boroomand Nasab, S., Moazed, H., and Bhatnagar, A. (2019). Phytoremediation potential of vetiver grass irrigated with wastewater for treatment of metal contaminated soil. Volume 21, 2019 - Issue 2 Pages 92-100. org/10.1080/15226514.2018.1474443.
  9. Kamalpour, S., H. Ali Alikhani., B. Motasharzadeh., and M. Zarei. 2014. Investigating the effect of some biological factors on lead vegetation and phosphorus uptake By eucalyptus (camaldulensis Eucalyptus), Iranian Forest Magazine, Iranian Forestry Association. 4: 457-470.
  10. Khatib, H., W. Huang., D. Mikheil., V. Schutzkus., and R. L. Monson.2009. Effects of signal transducer and activator of transcription (STAT) genes STAT1 and STAT3 genotypic combinations on fertilization and embryonic survival rates in Holstein cattle. Journal of Dairy Science. 92(12): 6186-6191
  11. Mobin, M., N. A. Khan. 2007. Photosynthetic activity pigment composition and antioxidative response of two mustard cultivars differing in photosynthetic capacity subjected to cadmium stress. J.plant Physiol. 164: 601-610. doi: 1016/j.jplph.2006.03.003.
  12. Ng, C.C., M. M. Rahman., A. N. Boyce., M. R. Abas. 2016. Effects of Different Soil Amendments on Mixed Heavy Metals Contamination in Vetiver Grass 97: 695–701. doi:1007/s00128-016-1921-5
  13. Peng, D., M. Shafi., Y. Wang., S. Li., W. Yan., J. Chen., Z. Ye., D. Liu. 2015. Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens. Environ Sci Pollut Res Int. 22(19): 14983–14992. doi: 10.1007/s11356-015-4692-3.
  14. Prasad, M. N. V., & J. Hagemeyer. 1999. Metallothioneins and Metal Binding Complexes in Plants.Heavy metal stress in plants. From molecules to Ecosystems.‏
  15. Ramos-Arcos, S.A., S. Lopez-Martinez., S. Lagunas Rivera., E. G. Gonzalez-Mondragon., M. C. De la Cruz leyva., J. R. Velazquez-Martinez. 2019. Phytoremediation of landfill leachate using vetiver (Chrysopogon zizanioides) and cattail (Typha latifolia). APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH. 17(2): 2619-2630.
  16. Siya R., D. F. Ardejani., M. Farahbakhsh., P. Norouzi, M.Yavarzadeh, and S. Maghsoudy. 2020. Potential of Vetiver Grass for the Phytoremediation of a Real Multi-Contaminated Soil, Assisted by Electrokinetic. Che mosphere. 246: 125802.
  17. Standard Practice for Nitric Acid Digestion of Solid Waste. 2017. Book of Standards Volume: 04 (ASTM D5198 -17).

18.  Standard Test Method for Analysis of Nickel Alloys by Flame Atomic Absorption Spectrometry. (ASTM E1835-14, 2014).

19.  Standard Test Method for Low Concentrations of Lead, Cadmium, and Cobalt in Paint by Atomic Absorption Spectroscopy. (ASTM D3335 - 85a, 2014).

20.  Standard Test Method for Manganese in Gasoline By Atomic Absorption Spectroscopy. (ASTM D3831 – 12, 2017).

  1. Tambunan, J.A.M., H. Effendi., M. Krisanti. 2018. Phytomerediating batik wastewater using Vetiver Chryspogon zizanioides (L). Polish J. Environ. Stud. 27 (3): 1281–1288. doi.org/10.1007/s13201-018-0640-y.
  2. Truong, P. and T. Danh. 2015. The Vetiver system for improving water quality: prevention and treatment of contaminated water and land, 2nd edn. The Vetiver Network International.
  3. Vaverková, M.D., D. Adamcová., M. Radziemska., S. Voběrková., Z. Mazur., J. 2018. Assessment and evaluation of heavy metals removal from landfill leachate by Pleurotus ostreatus. – Waste and Biomass Valorization 9(3): 503-511. doi: 10.1007/s12649-017-0015-x.
  4. Wong, M.H., Y. S. G. Chan., C. Zhang., C. Wang-Wai. 2016. Comparison of pioneer and native woodland species growing on top of an engineered landfill, Hong Kong: restoration programme. Land Degrad Dev. 27(3): 500–510. doi:10.1002/ldr.2380.
  5. World Health Organization. 2011. Guidelines for Drinking Water Quality, 4th Edition, Geneva, Switzerland. ISBN 978 92 4 1548151.
  6. Yan Y, J Gao., J. Wu., B. Li. 2014. Effects of inorganic and organic acids on heavy metals leaching in contaminated sediment. In: Interdisciplinary response to mine water challenges, China University of Mining and Technology Press, Xuzhou.(Eds. Sui, W., Sun, Y. and Wang, C.): 406-410.
  7. Zhao, X., K. Cheng., & D. Liu. 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis.Applied microbiology and biotechnology. 82(5): 815.