Comparison of Three Methods for Extracting the Available Amounts of Heavy Metals Copper, Cadmium, Lead, and Nickel for Wheat in Salt-Affected Soils of Khuzestan Province

Document Type : Research Paper

Authors

1 Assistant Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran

2 Associate Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran

3 Researcher, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran

Abstract

Information on soil pollution assessment and suitable extractants to determine the available amounts of heavy metals in calcareous and saline soils of Iran are limited. Therefore, this study aimed to compare EDTA pH 4.65, EDTA pH 8.6 and, DTPA pH 7.3 extractants to characterize availability of heavy metals including copper, cadmium, lead, and nickel in calcareous and saline soils of Khuzestan Province. To this end, 63 soil samples were collected from wheat fields of the province and wheat was planted under greenhouse conditions using randomized complete design with three replications. Due to salinity limitation, sequential leaching by two pore volumes of each soil was applied. Plant available amounts of copper, cadmium, lead and nickel in soils were measured with the extractants before and after leaching. Result demonstrated that DTPA pH 7.3 and EDTA pH 4.65 extracted the lowest and the highest amounts of heavy metals, respectively. Salinity reduction had different impacts on the heavy metals extraction based on the type of the metal and extractants, such that uniform and similar trends were not observed for the extracted metals. There was a significant positive correlation between the extracted copper of all three extractants and wheat copper content. This correlation for DTPA pH 7.3 extractant (r = 0.32, P ≤ 0.01) was higher than EDTA pH 4.65 (r = 0.27, P ≤ 0.05) and EDTA pH 8.6 (r = 0.25, P ≤ 0.05) extractants. For cadmium and lead, only positive and significant correlations (r = 0.33, P ≤ 0.01 and r = 0.28, P ≤ 0.05, respectively) were obtained between DTPA extract and their concentrations in wheat. No significant correlation was recorded between wheat nickel content with any of the extractants. Based on the results, it seems that the DTPA may be introduced as the most suitable extractant to determine the available copper of wheat in the calcareous and saline soils of Khuzestan. However, by considering the soil salinity, leaching requirement, and the weak correlations between the studied extractants and the plant available soil cadmium, lead, and nickel, further studies are recommended for assessment of these heavy metals.

Keywords

Main Subjects


  1. بابایی بافقی س.، ا. تاج آبادی پور و ع. اسفندیارپوربروجنی. 1396. ارزیابی چند عصاره گیر شیمیایی جهت تعیین روی قابل استفاده نهال های پسته در برخی از خاک های آهکی رفسنجان. تحقیقات آب و خاک ایران. 48(1): 148-137.
  2. بازرگان، ک.، م، رضایی، م. فیض الله زاده اردبیلی، ن. معبودی، ل. اسماعیل زاده و ع. جعفرنژادی. 1392. تعیین بهترین عصاره گیر بمنظور ارزیابی مقادیر قابل استفاده عناصر سنگین برای گیاه، در خاکهای آلوده انتخابی. موسسه تحقیقات خاک و آب. 45 صفحه.
  3. جعفرنژادی، ع.، م. همایی، غ.ع. صیاد و م. بایبوردی. 1391. ارزیابی ویژگی های موثر خاک بر وضعیت غلظت کادمیم در خاک و بذر گندم در برخی خاک های آهکی خوزستان. پژوهش های حفاظت آب و خاک (علوم کشاورزی و منابع طبیعی. 19(2): 164-149.
  4. حسین­پور، ع. و ح.ر. متقیان. 1392. أاثیر کاربرد لجن فاضلاب و کشت گندم (Triticum aestivum) بر قابلیت استفاده و شکل های شیمیایی روی در تعدادی از خاک های آهکی. آب و خاک (علوم و صنایع کشاورزی). 27(6): 1110-1100.
  5. رحمانیان، م. و ع. حسین­پور. 1397. مقایسه چند عصارهگیر شیمیایی جهت تعیین مقدار روی قابل استفاده آفتابگردان در خاکهای آهکی آلوده به فلزات سنگین. محیط زیست و مهندسی آب. 4(2): 157-148.
  6. سعادت، س.، ح. رضایی، ر. میرخانی، پ. ملکی. ل. اسماعیل نژاد و ی.ر. باقری. 1399. وضعیت شوری در نواحی ده گانه زراعی-زیستگاهی ایران با نگاهی بر کاربری اراضی. دومین همایش بین ­المللی شورورزی، یزد. 1082-1064.
  7. گوشه، م. و ع. جعفرنژادی. 1399. بررسی میزان همبستگی بین عمق و شوری آب زیرزمینی با شوری و مقدار آب خاک در مزارع گندم جنوب خوزستان. دومین همایش بین ­المللی شورورزی، یزد. 532-526.
  8. متقیان، ح.ر.، ع. حسین­پور، ف. رئیسی، و ج. محمدی. 1392. ارزیابی چند عصاره‌گیر جهت تعیین مس قابل استفاده خاک برای گندم (Triticum aestivum ) در خاک‌های آهکی تیمار شده با لجن فاضلاب. علوم و فنون کشتهای گلخانه‌ای. 4: 64-51.
  9. ملکوتی، م. و م. غیبی. 1379. تعیین حد بحرانی عناصر غذایی مؤثر در خاک، گیاه و میوه در راستای عملکرد کمی و کیفی محصولات استراتژیک کشور. سازمان تحقیقات‌، آموزش و ترویج کشاورزی‌، معاونت آموزش و تجهیز نیروی انسانی‌، نشر آموزش کشاورزی‌، کرج. 92 صفحه.
  10. میرجلیلی، ا.، س.ج. حسینی فرد.، ا. تاج آبادی و ع. اخگر. 1393. ارزیابی گلخانه‌ای و آزمایشگاهی چند عصاره‌گیر شیمیایی به منظور تعیین مس قابل استفاده‌ی پسته در بعضی از خاک‌های آهکی رفسنجان. پایان نامه کارشناسی ارشد. بخش علوم خاک، دانشکده کشاورزی، دانشگاه ولی عصر رفسنجان.
  11. نصری­فرد، م.، غ.ع. صیاد، ع. جعفرنژادی و م. افیونی. 1392. ارزیابی غلظت سرب در خاک و بذر مزارع تحت کشت گندم و تأثیر برخی ویژگی‌های خاک بر آن (مطالعه موردی: استان خوزستان). 17(65): 123-113.
  12. نیکفر، ف.، ع. غلامی، س. سبزعلیپور و ا. نظرپور. 1398. شناسایی آلودگی فلزات سنگین در خاکهای مناطق صنعتی شهرستان ماهشهر. فصلنامه علمی و تخصصی مهندسی آب. 7(2): 122-112.
  13. Acosta, J.A., B. Jansen, K. Kalbitz, A. Faz and S. Martínez-Martínez. 2011. Salinity increases mobility of heavy metals in soils. Chemosphere, 85:1318-24.
  14. Beaton, K.W., M.J. Mc loughlin and R.D. Graham. 2000. Salinity increases cadmium uptake by wheat and Swiss chard from soil amended with biosolids. Soil Research, 38:37-45.
  15. Brandt, K.K., P.E., Holm and O. Nybroe. 2008. Evidence for bioavailable copper− dissolved organic matter complexes and transiently increased copper bioavailability in manure-amended soils as determined by bioluminescent bacterial biosensors. Environmental Science & Technology, 42:3102-3108.‏
  16. Camobreco, V.J., B. K., Richards, T.S., Steenhuis, J.H., Peverly and M.B. McBride. 1996. Movement of heavy metals through undisturbed and homogenized soil columns. Soil Science, 161:740-750.‏
  17. Campbell, C.R. and C.O. Plank. 1998. Preparation of plant tissue for laboratory analysis. p. 37-50. In Y.P. Kalra (ed.) Handbook of reference methods for plant analysis. CRC Press, Taylor & Francis Group.
  18. Chapman, H.D. 1965. Cation exchange capacity. p. 891-901. In C.A. Black (ed.) Methods of soil analysis: Part 1, Physical and mineralogical methods. America Society of Agronomy and Soil Science Society of America, Madison.
  19. Chu, B., X. Chen, Q. Li, Y. Yang, X. Mei, B. He, H. Li and L. Tan. 2015. Effects of salinity on the transformation of heavy metals in tropical estuary wetland soil. Chemistry and Ecology, 31:186-198.‏
  20. Du Laing, G., R. De Vos, B. Vandecasteele, E. Lesage, F. M. Tack and M.G. Verloo. 2008. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuarine, Coastal and Shelf Science, 77:589-602.‏
  21. Falatah, A.M., A.S. Modaihsh, W.A. Al-Mustafa and M.O. Mahjoub. 1998. Evaluation of some chemical extractants for testing Zn availability to barely grown on calcareous soil. Agriculture Science, 10:85-97.
  22. Hao, X.Z., D.M. Zhou, D.Q. Huang, H.L. Cang and H. Wang. 2009. Heavy metal transfer from soil to vegetable in southern Jiangsu Province, China. Pedosphere, 19:305-311.
  23. Hosseinpur, A.R. and F. Dandanmozd. 2010. Sorption characteristics of copper in some calcareous soils of western Iran. American Journal of Science, 6(11):103-108.‏
  24. Jalali, M. and Z.V. Khanlari. 2008. Cadmium availability in calcareous soils of agricultural lands in Hamadan, western Iran. Soil & Sediment Contamination, 17(3):256-268.‏
  25. Khoshgoftarmanesh, A.H., H. Shariatmadari, N. Karimian, M. Kalbasi, S.E.A.T. Van der M. Zee and D.R. Parker. 2004. Salinity and zinc application effects on phytoavailability of cadmium and zinc. Soil Science Society of America Journal, 68(6):1885-1889.‏
  26. Li, J.L., J.W. Qiu, X.W. Wang, Y. Zhong, C.Y. Lan and W.S. Shu. 2006. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China. Environmental Pollution, 143:159-165.
  27. Lindsay W.L. 1979. Chemical equilibria in soils. John Wiley and Sons, New York.
  28. Maftoun, M., V. Mohasseli, N. Karimian and A.M. Ronaghi. 2003. Laboratory and greenhouse evaluation of five chemical extractants for estimating available copper in selected calcareous soils of Iran. Communications in Soil Science and Plant Analysis, 34:1451-1463.
  29. Menzies, N.W., M.J. Donn and P.M. Kopittke. 2007. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145(1):121-130.‏
  30. Mourid, S.S. 2014. Adsorption behavior of lead, cadmium and nickel on some calcareous soils.‏ Egyptian Journal of Soil Science, 54:387- 400.
  31. Nelson, R.E. 1989. Carbonates and gypsum. p. 181-197. In: A.L. Page (ed.) Methods of soil analysis, Part 2, Second. Ed. Fourth printing Am. Soc. of Agron., Madison, Wis. USA.
  32. Olsen, S.R., and L.E. Sommers. 1982. Phosphorus. p. 403–427. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. No. 9. ASA and SSSA, Madison, WI.
  33. Page, A.L., R.H. Miller and D.R. Keeney. 1982. Methods of soil analysis; 2. Chemical and microbiological properties, 2. Aufl. 1184 S., American Soc. of Agronomy (Publ.), Madison, Wisconsin, USA, gebunden 36 Dollar.
  34. Sahuquillo, A., A. Rigol and G, Rauret. 2003. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends in Analytical Chemistry, 22:152-159.
  35. Sillanpää, M. and H. Jansson. 1992. Status of cadmium, lead, cobolt, and selenium in soils and plants of thirty countries. FAO Soils Bulletin N. 65. Rome.
  36. Singh, B.P. M. Das and R.N. Prasad. 1990. Evaluation of available Cu status in high altitude wetland rice soils. Journal of Indian Society of Soil Science, 38:464-468.
  37. Steinberg, S.M. and V.F. Hodge. 2018. Copper complexation by dissolved organic matter in arid soils: A voltametric study. Environments, 5(11):125.‏
  38. Trierweiler, JF. and W.L. Lindsay. 1969. EDTA ammonium carbonate soil test for zinc. SSSAP, 33: 49-54.
  39. Vaseghi, H. K. Shahbazi and A. Khanmirzai. 2016. Nickel sorption in selected calcareous soils of Iran. Journal of Soil Management and Sustainable Production, 5:113-127.
  40. Vlček, V. and M. Pohanka. 2018. Adsorption of copper in soil and its dependence on physical and chemical properties. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 66(1):219-224
  41. Walkey, A. and I.A. Black. 1934. An examination of Degtjareff method for determination soil organic matter and a proposed modification of the chromic acid in soil analysis. I. Experimental. Soil Science, 79:459-465.
  42. Wang, G., M.Y. Su, Y.H. Chen, F.F. Lin, D. Luo and Gao, S.F. 2006. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environmental Pollution, 144:127–135.
  43. Wilding, L.P. 1985. Spatial variability: Its documentation, accommodation, and implication to soil survey. p. 166-194. In D.R. Nielsen, and J. Bouma (ed.) Soil spatial variability. Wageningen, Netherlands.
  44. Yasrebi, J., M. Sharifi, H. Fathi, N. Karimian, M. Emadi and M. Baghernejad 2008. Spatial variability of soil fertility properties for precision agriculture in southern Iran. Journal of Applied Sciences, 8:1612-1650.