Mapping Soil Organic Matter Using Topographic Attributes and Geostatistic Approaches in Toshan Area, Golestan Province, Iran

Document Type : Research Paper

Authors

1 PhD student of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources

2 Professor of Soil Science, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources

3 Assistant Professor of Soil Science, Department of Soil Science, College of Agriculture, Ferdowsi University of Mashhad

Abstract

Spatial variability in soil properties is a natural phenomenon, and recognizing these changes is inevitable, particularly in agricultural areas, for detailed planning and management. Correct management of agricultural operation and maintenance of soil organic carbon (SOC) are important factors in sustainable agriculture. This study was conducted to predict spatial variability of SOC using topography attributes and kriging, inverse distance weighted (IDW), and co-kriging techniques in loess lands of Toshan area, Golestan Province. In order to perform a systematic randomized sampling, 135 soil samples were collected from a depth of 0-20 cm. The results showed that ordinary co-kriging method with topography wetness index (TWI) as an auxiliary variable had the least error compared to kriging and inverse distance weighting (IDW) method and was more accurate to estimate soil organic carbon due to high spatial correlation of SOC with TWI. Interpolation map of soil organic carbon from whole part of hillslope showed lower SOC concentrations with increasing elevation and slope gradient. Spatial correlation ratio of SOC was different in various slope positions and these patterns were closely related to the structure of topography.

Keywords


  1. چیت سازان، م.، ک. رنگزن.، م.ص. درانی‌نژاد؛ و ، ا. تقی‌زاده. 1387. پهنه‌بندی هیدروشیمیایی عناصر کمیاب آرسنیک، آهن و منگنز در آبخوان آبرفتی میداوود، خوزستان با استاده از سامانه اطلاعات جغرافیایی (GIS). همایش ژئوماتیک 87، سازمان نقشه‌برداری، تهران.
  2. مدنی، ح. 1373. مبانی زمین آمار. انتشارات دانشگاه امیر کبیر. 659 ص.
  3. محمدی، ج. 1377. مطالعات تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان) با استفاده از نظریه ژئواستاتیک-کریجینگ. مجلله علوم و فنون کشاورزی و منابع طبیعی. 2: 49-64.
  4. Bosun, S.Z; and Z. Qiguo. 2003. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical, china. Geoderma. 115:85-99.
  5. Burgess, T.M; and R. Webster. Optimal interpolation and isarthmic mapping of soil properties: I the semi-variogram and punctual kriging. Journal of Soil Science. 31: 315- 331.
  6. Campbell, B. 1978. Spatial variation of sand content and pH within single contiguous delineation of two soil mapping units. Journal of Soil Science. 32: 1028-1032. 
  7. Chen, F., L.T. West; D.E. Kissel; R.Clark; and W. Adkins. 2008. Field-scale mapping of soil organic carbon with soil-landscape modeling. P. 294- Proceedings of the 8th international symposium on spatial accuracy assessment in natural resources and environmental sciences, Shanghai, P. R. China.
  8. Chunfa, W., W. Jiaping; L. Yongming; Z. Limin; and D. Stephen. 2009. Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Science Society of America Journal. 73:1202-1208.
  9. Endreny, T.A., and E.F. Wood. 2003. Maximizing spatial congruence of observed and DEM-delineated overland flow networks. International Journal of Geographical Information Science. 17: 699-713.
  10. Florinsky, I.V. 2005. Artificial lineaments in digital terrain modeling: can operators of topographic variables cause them? Mathematical Geology. 37: 357-372.
  11. Godwin, R.J., and P.C.H. Miller. 2003. A review of the technologies for mapping within- field variability. Biosyststems Engineering. 84:393-407.
  12. Grunwald, S. 2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma. 152: 195-207.
  13. Guo, P.T., H.B. Liu; and W. Wu. 2009. Spatial prediction of soil organic matter using terrain attributes in a hilly area. International Conference on Environmental Science and Information Application Technology,Wuhan, CHINA. 3:759-762.
  14. Hengel, T.,G. Rossiter; and A. Stein. 2003. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Australian Journal of Soil Research. 41: 1403-1422.
  15. Herbst, M., B. Diekkruger; and H. Vereecken. 2006. Geostatistical co-regionalization of soil hydraulic properties in a micro-scale catchment using terrain attributes. Geoderma. 132: 206-221.
  16. Huang, X; S. Senthilkumar; A. Kravchenko. K. Thelen; and J. Qi. 2007. Total carbon mapping in glacial till soils using near-infrared spectroscopy, landsat imagery and topographical information. Geoderma.141: 34-42.
  17. Issaks, E.H., and R.M. Srivastava. 1989. Applied Geostatistics. Newyork, Oxford University Press.
  18. Lu, Y. and D.W. Wong. 2008. An adaptive inverse-distance weighting spatial interpolation technique. Computers and Geosciences. 34: 1044-1055.
  19. McBratney, A.B. and R. Webster. 1983. Optimal interpolation and isarithmic mapping of soil properties: Vco-regionalization and multiple sampling strategy. Journal of soil Science. 34: 137-162.
  20. Moore, I.D., P.E. Gessler; and G.A. Nielson. 1993. Soil attributes prediction using terrain analysis. Soil Science Society of America Journal. 57:443-452.
  21. Pei, T., C. Qin; A. Zhu; L. Yang; M. Luo; B. Li; and C. Zhou. 2010. Mapping soil organic matter using the topographic wetness index: A comparative study based on different flow-direction algorithms and kriging methods. Ecological Indicators. 10: 610-619.
  22. Schwanghart, W., and Jarmer. 2011. Linking spatial patterns of soil organic carbon to topography - A case study from south-eastern Spain. Geomorphology. 126: 252- 263.
  23. Sullivan, D.G., J.N. Shaw; and D. Rickman. 2005. IKONOS imagery to estimate surface soil property variability in two Alabama physiographies. Soil and Water Management and Conservation. 69: 1789-1798.
  24. Wang, Y., X.C. Zhang; J.L. Zhang; and S.J. Li. 2009. Spatial variability of soil organic carbon in a watershed on the loess plateau. Pedosphere. 19: 486-495.
  25. Walkley, A. and I.A. Black. 1934. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-38.
  26. Western, A.W. 2004. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology. 286: 113-134.
  27. Whelan, M.J. and C. Gandolfi. 2002. Modeling of spatial controls on denitrification at the landscape scale. Hydrological Processes. 16: 1437-1450.
  28. Wilson, J.P. and J. C. Gallant. 2000. Terrain Analysis. Wiley and Sons, New York.
  29. Quine, T.A. and Y. Zhang. 2002. An investigation of spatial variation in soil erosion, soil properties and crop production within an agricultural field in Devon, U.K. Journal of soil and water conservation. 57: 50-60.
  30. Velayutham, M. 2000. Organic carbon stock in soil of India. Global Climate Change and Tropical. Ecosystem. 28:71- 95.
  31. Yang, P., R.. Mao; H. Shao; and Y. Gao. 2009. An investigation on the Distribution of eight hazardous heavy metals in the suburban farmland of Journal of Hazardous Materials. 167: 1246-1251.
  32. Yoo, K., R.. Amundson; A. Heimsath; and M. Dietrich. 2006. Spatial patterns: of soil organic carbon on hillslopes integrating geomorphic processes and the biological C cycle. Geoderma. 130: 47-65.