Influence of Tabriz Petrochemical Sludge on Preferential Flow and Bromide Transport Parameters in a Calcareous Loamy Soil

Document Type : Research Paper

Authors

1 Assistant Professor of Department of Soil Science, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran

2 Former Graduate Student of Department of Soil Science, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran

3 Associated Professor of Agricultural Research Engineering Institute, Karaj, Iran

Abstract

Preferential flow pathways cause leaching of significant amount of nutrient elements from the root zone. The objectives of this study were to evaluate the influence of petrochemical sludge on preferential flow and transport parameters of bromide in convection-dispersion equation (CDE) and mobile-immobile models in a calcareous loam soil. The soil was taken from the research farm of University of Mohaghegh Ardabili. The sludge was prepared from the Tabriz Petrochemical Company. The used rates of fresh sludge were: 0, 25, 50, 75, and 100 t ha-1. After air drying, the sludge was mixed with the air-dried soil and filled in PVC tube (25 cm height and 15 cm diameter) and kept in greenhouse at the temperature of 22 ± 4 ˚C and moisture of 70 to 80 percent of field capacity for 6 months. The experiment was conducted as completely randomized blocks design with 5 sludge rates at 3 replications. Saturated hydraulic conductivity (Ks) and bromide breakthrough curves (BTCs) were measured in soil columns at the end of the sixth month. Dispersivity (λ) at the CDE and MIM models, immobile water (θim) and solute exchange coefficient (α) at the MIM model were estimated by fitting measured BTCs data (time and relative concentration of bromide) to these models using HYDRUS-1D software. All sludge rates significantly decreased Ks by 55% to 67% and increased bromide breakthrough time by 60.29% to 63.19% compared to the control. Dispersivity at both CDE and MIM models significantly increased only for the 50 t ha-1 of sludge compared with the control. The sludge did not significantly affect θim and α parameters. The results showed that petrochemical sludge controlled preferential flow of bromide in the studied soil from semiarid region.

Keywords


  1. اصغری، ش. 1389. اثر لجن بیولوژیکی کارخانه پتروشیمی تبریز بر برخی خصوصیات فیزیکی، مکانیکی و هیدرولیکی خاک مزرعه تحقیقاتی بابلان. گزارش نهایی طرح تحقیقاتی دانشگاه محقق اردبیلی. اردبیل، ایران.
  2. اصغری، ش. 1390. اثرات لجن فاضلاب پتروشیمی تبریز بر کربن آلی، شاخص های پایداری خاکدانه و حدود پایایی یک خاک منطقه نیمه خشک. نشریه آب و خاک (علوم و صنایع کشاورزی). 25 (3): 530 –
  3. بای‌بوردی، م. 1385. فیزیک خاک. انتشارات دانشگاه تهران.
  4. بهره‌مند، م.ر.، م. افیونی.، م.ع. حاج عباسی و ی. رضایی‌نژاد. 1381. اثر لجن فاضلاب بر برخی ویژگی‌های فیزیکی خاک. مجله علوم و فنون کشاورزی و منابع طبیعی. 6 (4): 1 - 10.
  5. تاجیک، ف. 1383. ارزیابی پایداری خاکدانه­‌ها در برخی مناطق ایران. مجله علوم و فنون کشاورزی و منابع طبیعی.8 (1): 125 –
  6. عباسی، ف. 1386. فیزیک خاک پیشرفته. انتشارات دانشگاه تهران.
  7. علیزاده، ا. 1378. رابطه آب و خاک و گیاه. انتشارات دانشگاه امام رضا (ع).
  8. خسروی دهکردی، ا.، م. افیونی.، و ف. موسوی. 1385. بررسی تغییرات غلظت نیترات آبهای زیرزمینی حاشیه زاینده رود. مجله محیط شناسی. 39: 33 –
  9. زند سلیمی، س.، ع.ا. محبوبی.، م.ر. مصدقی.، م. رشیدیان و م. فیروزمنش. 1385. بررسی اثر تیمارهای خاک بر منحنی رخنه باکتری اشرشیا کلی آزاد شده از کودهای آلی مختلف. نشریه آب و فاضلاب. 59: 63 –
  10. نقوی، ه.، م.ع. حاج عباسی و م. افیونی. 1384. تأثیر کود گاوی بر برخی خصوصیات فیزیکی و ضرایب هیدرولیکی و انتقال بروماید در یک خاک لوم شنی در کرمان. مجله علوم و فنون کشاورزی و منابع طبیعی. 9(3): 103-93.
  11. کسرایی، ر و س. ساعدی. 1389. تاثیر لجن فاضلاب پتروشیمی تبریز بر رشد گیاه گوجه فرنگی. مجله آب و خاک. 24 (1): 10-20.
  12. Abbasi, F., D. Jacques, J. Simunek, J. Feyen, and M. Th. van Genuchten. 2003. Inverse estimation of soil hydraulic and solute transport from transient field experiments: heterogeneous soil. Transaction of the ASAE. 46(4): 1097-1111.
  13. Adrino, D. C., and H. E. Doner. 1986. Direct potentiometric method for bromide. p. 451. In: A. L. Page (ed). Methods of Soil Analysis. Part 2. Chemical and Microbiological Methods. Agron. Monog. 9. ASA and SSSA, Madison, WI.
  14. Asghari, Sh., F. Abbasi, and Neyshabouri, M. R. 2011. Effects of soil conditioners on physical quality and bromide transport properties in a sandy loam soil. Biosyst. Eng. 109: 90-97.
  15. Ersahin, S., R. I. Papendick, J. L. Smith, C. K. Keller, and V. S. Manoranjan. 2002. Macropore transport of bromide as influenced by soil structure differences. Geoderma. 108: 207-223.
  16. Fahad Ali, A., and W. Ali Abdul-Hussein. 2002. Mobile fraction of water and transport parameters in modified structure soil. Transactions 17th Inter. Congress of Soil Sci. Symp. No. 1, P. No. 511. Bangkok, Thailand.
  17. Horton, R., M. L. Thompson, and J. F. Mcbride. 1987. Methods of estimating the travel time of no interacting solute through compacted soil material. Soil Sci. Soc. Am. J. 51: 48-53.
  18. Jacobsen, O. H., F. J. Leij, and M. Th. van Genuchten. 1992. Parameter determination for chloride and tritium transport in undisturbed lysimeters during steady flow. Nordic. Hydrol. 23: 89-104.
  19. Jury, W., and R. Horton. 2004. Soil Physics. John Wiley and Sons, Inc.USA.
  20. Karimi, M., M. Afyuni, Y. Rezainejad, and R. Schulin. 2009. Heavy metal uptake by wheat from a sewage sludge-amended calcareous soil. Nutrition Cycle Agroecosystem. 83:51-61.
  21. Klute, A (ed). 1986. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2 nd Agron. Monog.9. ASA and SSSA, Madison, WI.
  22. Klute, A., and C. Dirksen. 1986. Hydraulic conductivity of saturated soils (constant head). p. 694. In: A. Klute (ed). Methods of soil analysis. Part1, 2 nd edition Agron. Monog.9. ASA and SSSA, Madison, WI.
  23. Li, Y., and M. Ghodrati. 1997. Preferential transport of solute through soil columns containing constructed macropores. Soil Sci. Soc. Am. J. 61: 1308-1317.
  24. Page, A. L. (ed). 1985. Methods of Soil Analysis. Part 2. Chemical and Microbiological Methods. Agron.Monog.9. ASA and SSSA, Madison, WI.
  25. Prado, B., C. Duwig, J. Etchevers, J. P. Gaudet, and M. Vauclin. 2011. Nitrate fate in a Mexican Andosol: Is it affected by preferential flow? Agricultural Water Management. 98: 1441-1450.
  26. Simunek, J., N. Jarvis, M. Th. van Genuchten, and A. Gardenas. 2003. Review and comparision of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 272: 14-35.
  27. Simunek, J., M. Sejna, and M. Th. van Genuchten. 1998. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat and multiple solutes in variably saturated media. Version 2.0, IGWMC-IPS-70, International Groundwater Modeling Center, Colorado School of Mines, Golden, Colorado, p.202.
  28. Singh, P., and R. Kanwar. 1991. Preferential solute transport through macropores in large undisturbed saturated soil columns. J. Environ. Qual. 20: 295-300.
  29. Skaggs, T., G. V. Wilson, P. Shouse, and F. Leij. 2002. Solute transport: experimental methods. p.1381-1392. In: J. H. Dane, and G. C. Topp (ed). Methods of Soil Analysis. Part 4. SSSA, Madison, WI.
  30. Sonon, L. S., and A. P. Schwab. 2004. Transport and persistence of Nitrate, Atrazine and Alachlor in large intact soil columns under two levels of moisture content. Soil Sci. 8: 541-553.
  31. Torride, N., M. Inoue, and F. J. Leij. 2003. Hydrodynamic dispersion in an unsaturated dune sand. Soil Sci. Soc. Am. J. 67: 703-712.
  32. van Genuchten, M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898.
  33. Vogeler, I., S. R. Green, T. Mills, and N. E. Clothier. 2006. Modeling nitrate and bromide leaching from sewage sludge. Soil Till. Res. 89(2): 177-184.