Effects of Sulfur, Phosphorous, and Plant on Soil Microbial Biomass and Phosphatase Activities

Document Type : Research Paper

Authors

1 Department of Soil Science, Science and Research Branch, Islamic Azad University, Tehran-Iran

2 Assistant Professor, Soil and Water Research Institute of Iran, Karaj, Iran

3 Assistant Professor, Department of Soil Science, Islamic Azad University, karaj-Iran

Abstract

The soil enzymes and microbial biomass play a key role in nutrient cycling and have higher sensitivity to management and environmental changes compared to most physical and chemical properties of soil. Thus, these parameters have been monitored as essential indicators of soil quality. Sulfur is one of the by-products of gas and petrochemical refinery that has potential use as soil amendment in oil rich countries. Recently, application of sulfur has been on the rise to decrease soil pH and increase some nutrients availability in calcareous soils. The aim of this study was to investigate the impacts of sulfur, phosphorus, and plant growth on soil microbial biomass carbon and phosphatases activity. A split factorial experiment consisting of four levels of sulfur (0, 500, 1000, and 2000 kgha-1) , three levels of phosphorus ( control , application rate based on soil test, 65% soil test) and two levels of plant (with and without corn planting) arranged in a complete randomize block design with three replication under field condition. Microbial biomass carbon and alkaline and acid phosphatase activities were determined. The results showed that microbial biomass carbon and phosphatase activities were significantly greater in the presence of plant than in its absence. The addition of sulfur and phosphorus to soil decreased microbial biomass carbon as well as alkaline and acid phosphatase. Sulfur effect was significant on soil microbial carbon, alkaline and acid phosphatase, but effect of phosphorus was not significant on phosphatase activities.

Keywords


  1. آقابابائی، ف.، بهشتی، ع.، منصورزاده، م. و رئیسی، ف. 1386 . اثر متقابل بافت و گوگرد بر فعالیت برخی آنزیم­های خاک. دهمین کنگره علوم خاک ایران، کرج، ایران
  2. امانی، ف.، رئیسی، ف.، پیرولی بیرانوند، ن . و موسوی شلمانی، ا. 1387. تأثیر گوگرد بر میزان تثبیت ازت و برخی صفات رشد دو رقم سویا با استفاده از روش رقت ایزوتوپی .15Nمجله کشاورزی، شماره 1، صفحات 20-9.
  3. دیانی، ل. و رئیسی، ف.1390. نقش کمپوست در تعدیل اثرات کادمیم بر تنفس و بیوماس میکروبی فعالیت فسفاتازهای خاک. نشریه آب و خاک، جلد 25، شماره یک، صفحات 173-161.
  4. فریدونی ناغانی، م.، رئیسی، ف. و فلاح، س. 1389. روند تولید CO2 و تغییر کربن بیومس میکروبی در خاک های تیمار شده با کود اوره و مرغی. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، سال چهاردهم، شماره پنجاه و چهارم، صفحات 110-97.
  5. کریمی نیا، آ. و شعبانپور شهرستانی، م. 1382. ارزیابی توان اکسایش گوگرد توسط میکروارگانیسم­های هتروتروف در خاک­های مختلف. مجله علوم خاک و آب، جلد17، شماره یک، صفحات 79-68.
  6. نجف زاده نوبر، ز.، شعبانپور شهرستانی، م. و کریمی نیا، آ. 1384. بررسی تأثیر کاربرد ماده آلی و گوگرد بر قابلیت جذب فسفر و عناصر کم مصرف در خاک. نهمین کنگره علوم خاک ایران، تهران، ایران.
  7. Aciego Pietri, J. C., and Brookes, P. C. 2008. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biolo. Biochem. 40:1856–1861.
  8. Anandham, R., Sridar, R., Nalayini, P., Poonguzhali, S., Madhaiyan, M., Tongmin, Sa. 2007. Potential for plant growth promotion in groundnut ( Arachis hypogaea ) Cv. ALR-2 by co-inoculation of sulfur- oxidizing bacteria and Rhizobium. Microbiol. Res. 162: 139-153.
  9. Aon, M.A., Cabello, M.N., Sarena, D.E., Colaneri, A.C., Franco, M.G., Burgos, J.L., and Cortassa, S. 2002. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Appl. Soil. Ecol. 18: 239-254.
  10. Arao, T., 1999. In situ detection of changes in soil bacterial and fungal activities by measuring 13C incorporation into soil phospholipid fatty acids from 13C acetate. Soil Biol. Biochem. 31: 1015–1020.
  11. Baath, E., and Anderson, T.H. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol.  35: 955–963.
  12. Baath, E., Frostegard, A., and Fritze, H. 1992. Soil bacterial biomass, activity, phospholipids fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl. Environ. Microbiol. 58: 4026–4031.
  13. Baath, E., Frostegard, A., Pennanen, T., and Fritze, H. 1995. Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol. Biochem. 27: 229–240.
  14. Bardgett, R.D., Jones, A.C., Jones, D.L., Kemmitt, S.J., Cook, R., and Hobbs, P. 2001. Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biol. Biochem. 33: 1653–1664.
  15. Bending, G.D., Turner, M.K., Rayns, F., Marx, M.C., and Wood, M. 2004. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem. 36: 1785-1792.
  16. Benizri, E., Nguyen, C., Piutti, S., Slezack-Deschaumes, S., and Philippot, L. 2007. Additions of maize root mucilage to soil changed the structure of the bacterial community. Soil Biol. Biochem. 39: 1230–1233.
  17. Blagodatskaya, E.V., and Anderson, T.H. 1998. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and QCO2 of microbial communities in forest soils. Soil Biol. Biochem. 30: 1269–1274.
  18. Brady, N.C. and Weil, R.R. 2002. The Nature and Properties of Soil, 13th ed. Springer Netherlands, 249 pp.
  19. Chen, C.C., Wang, M.K., Chiu, C.Y., Huang, P.M., and King, H.B. 2001. Determination of low molecular weight dicarboxylic acids and organic functional groups in rhizosphere and bulk soils of Tsuga and Yushania in a temperate rain forest. Plant Soil 231: 37–44.
  20. Clarholm, M., and Rosswall, T. 1980. Biomass and turnover of bacteria in a forest soil and a Soil Biol. Biochem. 12: 49-57.
  21. De Nobili, M., Contin, M., Mondini, C., Brookes, P.C. 2001. Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol. Biochem. 33: 1163–1170.
  22. Dewan, M.L., and Famouri, J. 1964. The Soils of Iran. Food and Agriculture Organization of the United Nations, Technology and Engineering, 319 pages.
  23. Eivazi, J., and Tabatabai, M.A. 1997. Phosphatases in soil. Soil Biol. Biochem. 27: 1011–1016.
  24. Fox, T.R., and Comerford, N.B. 1990. Low molecular weight organic acids in selected forest soils of Southeastern U.S.A. Soil Sci. Soc. Am. J. 54: 1763–1767.
  25. Frankenberger, J. R., and Bingham, F. T. 1982. Influence of salinity on soil enzyme activities. Soil Sci. Soc. Am. J. 46: 1173-1177.
  26. Frankenberger, J. r., and Johanson, J.B. 1982. Effect of pH on enzyme stability in soils. Soil Biol. Biochem. 14: 433–437.
  27. Frostegard, A, Baath, E., and Tunlid, A. 1993. Shifts in the structure of soil microbial communities in limed forest as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 25: 723–730.
  28. Gestel, M.V., Merckx, R., and Vlassak, K. 1993. Microbial biomass and activity in soils with fluctuating water contents. Geoderma 56: 617-626.
  29. Ghoularata, M., Raeisi, F., and Nadian, H. 2008. Salinity and phosphorus interactions on growth yield and nutrient uptake by Berseem. clover ( Trifolium alexandrinum ). I. J. Field Crops Res. 6: 117-126.
  30. Goberna, M., Sánchez, J., Pascual, J.A., and Carcía, C. 2006. Surface and subsurface organic carbon, microbial biomass and activity in a forest soil sequence. Soil Biol Biochem. 38: 2233-2243.
  31. Gu, Y. H., and Mazzola, M. 2003. Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl. Soil Ecol. 24: 57-72.
  32. Hashemimajd, K., Mohamadi farani, T., and Jamaati-e-Somarin, S. 2012. Effect of elemental sulphur and compost on pH, electrical conductivity and phosphorus availability of one clay soil. Afr. J. Biotechnol. 6: 1425-1432.
  33. Hu, C., and Cao, Z. 2007. Size and activity of the soil microbial biomass and soil enzyme activity in long-term field experiments. W. J. Agri.   3: 63-70.
  34. Janssen, A. J. H., Lettinga, G., and Keizer, A. 1999. Removal of hydrogen sulfide from wastewater and waste gases by biological conversion to elemental sulfur particles. Coloids Surf. 151: 389-397.
  35. Juma, N.G., and Tabatabai, M.A. 1977. Effects of trace elements on phosphatase activity in soils. Soil Sci. Soc. Am. J. 41: 343–346.
  36. Kaiser, E. A., and Heinemeyer, O. 1993. Seasonal variations of soil microbial biomass carbon within the plough layer. Soil Biol. Biochem. 25: 1649-1655.
  37. Landi, L., Renella, G., Moreno, J.L., Falchini, L., and Nannipieri, P. 2000. Influence of cadmium in the metabolic quotient, L-, D-glutamic acid respiration ratio and enzyme activity, microbial biomass ratio under laboratory conditions. Biol Fertil. Soils 32: 8-16.
  38. Makoi, J. H. J. R., Bambara, S., and Ndakidemi, P. A. 2010. Rhizosphere phosphatase enzyme activities and secondary metabolites in plants as affected by the supply of Rhizobium, lime and molybdenum in Phaseolus vulgaris Aust. J. Crop Sci. 4: 590-597.
  39. Makoi, J. H. J. R., and Ndakidemi, P. A. 2008. Selected soil enzymes: Examples of their potential roles in the ecosystem. Afr. J. Biotechnol. 7: 181-191.
  40. Marschner, P., Crowley, D., and Yang, C.H. 2004. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil. 261: 199–208.
  41. McLaughlin, M.J., Smolders, E., and Merckx, R. 1998. Soil–root interface: Physicochemical processes. In Soil Chemistry and Ecosystem Health, Special Publication no 52. pp. 233-277. Soil Science Society of America, Madison, WI, USA.
  42. Miralles, I., Ortega, R., Sa´nchez-Maranon, M., Leiro´ S, M.C., Trasar-Cepeda, C., and Gil-Sotres, F. 2007. Biochemical properties of range and forest soils in Mediterranean mountain environments. Biol. Fertil. Soils 43: 721-729.
  43. Nicolardot, B., Fauvet, G., and Cheneby, D. 1994. Carbon and nitrogen cycling through soil microbial biomass at various temperatures. Soil Biol. Biochem. 26: 253-261.
  44. Orman, S., and Ok, H. 2012. Effects of sulphur and zinc applications on growth and nutrition of bread wheat in calcareous clay loam soil. Afr. J. Biotechnol .13: 3080-3086.
  45. Page, A.L., Miller, R.H., and Keeney, D.R. 1982. Methods of Soil Analysis, Part2: Chemical and Microbiological properties. 2nd ed. A.A.C., Inc., Soil S.S.S.A., Inc., Madison Publisher, Wisconsin, USA.
  46. Paterson, E. 2003. Importance of rhizodeposition in the coupling of plant and microbial productivity. Eu. J. Soil Sci. 54: 741–750.
  47. Pauline, M. Mele. and David, E. Crowley.2008. Application of self-organizing maps for assessing soil biological quality. Agriculture, Ecosystems and Environment, 126: 139-152.
  48. Pennanen, T. 2001. Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH – a summary of the use of phospholipid fatty acids, Biolog(R) and 3H-thymidine incorporation methods in field studies. Geoderma 100: 91–126.
  49. Rasse, D.P., Rumpel, C., and Dignac, M.-F., 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil. 269: 341–
  50. Rietz, D. N., and Haynes, R. J. Effect of irrigation-induced salinity and sodicity on
  51. soil microbial activity. Soil Biol. Biochem. 35: 845-854.
  52. Riffaldi, R., Saviozzi, A., Levi-Minzi, R., and Cardelli, R. 2002. Biochemical properties of a Mediterranean soil as affected by long-term crop management systems. Soil & Till. Res. 67: 109-114.
  53. Sanaullaha, M., Blagodatskaya, E., Chabbi, A., Rumpel, C., and Kuzyakov, Y. 2011. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Appl. Soil Ecol. 48: 38–44.
  54. Sardinha, M. T., Muller, H., Schmeisky, R., and Joergensen, G. 2003. Microbial performance in soils along a salinity gradient under acidic conditions. Applied Soil Ecology, 23: 237-244.
  55. Schutter, M.E., and Fuhrmann, J. J. 2001. Soil microbial community responses to fly ash amendment as revealed by analysis of whole soils and bacteria isolates. Soil Biol. Biochem. 33: 1947–1958.
  56. Sood, S. G. 2003 Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol. Ecol. 45: 219-227.
  57. Sun, H., Yan, L., and Mu, C. 2012. Rhizosphere microbial dynamics of Leymus chinensis and its correlation with aboveground biomass and soil environment. Afr. J. Microbiol. Res. 6: 3814- 3820.
  58. Szmigielska, A. M., Van Rees, K. C. J., Cieslinski, G., and Huang, P.M. 1996. Low molecular weight dicarboxylic acids in rhizosphere soil of durum wheat. J. Agric. Food Chem. 44: 1036–1040.
  59. Tate, R. L. 1995. Soil Microbiology. Wiley, New York, pp. 171–200.
  60. Thomson, B., Robson, A. D., and Abbort, L.K. 1986. Effects of phosphorus on the formation of mycorrhizaes by Gigaspora and Glomus fasciculatum in relation to root carbohydrates. New Phytologist. 103: 751-763.
  61. Tripathi, S.; Chakrabarty, A.; Chakrabarti, K., and Bandyopadhyay, B.K. 2007. Enzyme activities and microbial biomass in coastal soils of India. Soil Biol. Biochem. 11: 2840–2848.
  62. Tripathi, S.; Kumari, S.; Chakraborty, A.; Gupta, A.; Chakrabarti, K., and Bandyapadhyay, B.K. 2006. Microbial biomass and its activities in salt-affected soils. Biol Fertil. Soils. 3: 273–277.
  63. Vance, E.D., Brookes, P.C., and Jenkinson, D.S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19 : 703–707.
  64. Vig, k., Megharaj, M., Sthunathan, N., and Naidu, R. 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv. Environ. Res.8: 121-135.
  65. Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A., and McIntosh, M. 2006. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol. Biochem. 38: 1451–1461.
  66. Wardle, D.A. 1992. A comparative assessment of factors which influence microbial biomass: carbon and nitrogen levels in soils. Biol. Rev. 67: 321-358.
  67. Wardle, D.A. 1998. Controls of temporal variability of the soil microbial biomass: a global-scale synthesis. Soil Biol. Biochem. 30: 1627-1637.
  68. Wichern, J.; Wichern, F., and Joergensen, R.G. 2006. Impacto of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 1-2: 100-108.
  69. Wright, A.L., Hons, F.M., and Matocha, J.E. 2005. Tillage impacts on microbial biomass and soil carbon and nitrogen dynamics of corn and cotton rotations. Applied Soil Ecology. 29: 85–
  70. Wyszkowska, J., Kucharski, J., and Benedycka, Z. 2001. Physicochemical properties and enzymatic activity of sulfur-acidified horticultural soil. Polish Journal of Environmental Studies 10: 293-296.
  71. Zoysa, A.K.N., Loganathan, P., and Hedley, M.J. 1999 Phosphorus utilisation efficiency and depletion of phosphate fractions in the rhizosphere of three tea (Camellia sinensis) clones. Nutr. Cycl. Agroecosyst. 53: 189–201.