Studying Slope Position Effects on Soil Physico-chemical Properties in a Hardwood Forest of Lahijan Region

Document Type : Research Paper

Authors

1 Associate Professor, University of Guilan. College of Agriculture. Soil Science Department

2 Former Graduate Student, University of Guilan. College of Agriculture. Soil Science Department

Abstract

This research was conducted to study the effect of different slope position on some physico-chemical properties of hardwood forest soils. The study area was located in Lahijan region of Guilan Province (northern Iran). After field observations, three ridges were selected and, in each of them, three soil profiles (on the summit, shoulder, and footslope position) were used for sampling in the mountain landform with granite parent material. Physico-chemical analysis including soil texture (hydrometer method), bulk density (clod method), organic carbon (Walkley and Black method), total nitrogen (Kejeldahl method), electrical conductivity of saturated paste extract using conductivity meter, soil pH by potentiometric method with a glass electrode (in 0.01 M CaCl2) using a soil solution ratio of 1:2, exchangeable sodium and potassium were measured by flame photometer set. Cation exchange capacity (CEC) were determined by Bower method (1N ammonium acetate, pH=7), available P (Olsen method) and humic-fulvic acid content (freeze drying method). The results showed that summit position had the maximum amount of clay, organic carbon, total N, P, Ca+Mg, CEC, EC, humic and fulvic acid in comparison with shoulder and footslope positions; whereas, soil pH, bulk density, and exchangeable sodium were significantly higher in footslope. Based on the results, soil properties depend on slope position which in turn influence soil development and soil characteristics.

Keywords


  1. باقر نژاد، م. 1381. جغرافیای خاک­های ایران و جهان. انتشارات دانشگاه شیراز، 146 صفحه.
  2. حسامی، ر .1384. مطالعه آبشویی، انتقال مواد و تکامل خاک در برخی خاک­های جنگلی ناحیه لاهیجان. پایان نامه کارشناسی ارشد، دانشکده علوم کشاورزی، دانشگاه گیلان.
  3. سازمان هواشناسی کشور. 1387. برگرفته از Http://www.irimo.ir
  4. موسسه تحقیقات خاک و آب . نقشه رژیم رطوبتی خاک­های ایران. سازمان تحقیقات کشاورزی، وزارت جهاد کشاورزی.
  5. وزارت نیرو .1360. مطالعه خاک‌شناسی شرق گیلان. سازمان آب منطقه­ای گیلان. شرکت اریس.
  6. Afuniy, M. M., D. K. Cassel, and W. P. Robarge. 1993. Effect of landscape position on soil water and corn silage yield. Soil Sci. Am. J. 57: 1573-1580.
  7. Bartoli, F., G. Burtin, J. J. Royer, M. Gury, V. Gomendy, R. Leviandier and R. Gafrej. 1995. Spatial variability of topsoil characteristics within silty soil type, effect on clay migration. Geoderma. 68: 279-300.
  8. Black, G. R. and K. H.1989. Bulk density in: A. Klute, Methods of soil analysis, 2nd? edition. Soil Sci. Soc. Am. Madison, Wiscon. USA. 363-375.
  9. Burton, D. L. 1999. The evaluation and monitoring of soil biological community in Manitoba. Soil Biol. Biochem.J. 31: 1411-1417.
  10. Chen, Z. S., C. F. Hsieh, F. Y. Jiang, T. H. Hsieh, I. F. Sun. 1997. Relationships of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecol. 132: 229– 241.
  11. Daniels, R. B., E. E. Gamble, and J. G. cady. 1971. The relation between geomorphology and soil morphology and genesis. Adv. In Agronomy V. 23: 51- 88.
  12. Fanning, D. S., C. B. Fanning. 1989. Soil morphology genesis and classification. Wiley, pp. 360-368.
  13. Gee, g. W. and , J. W. Bauder. 1986. Particle-size analaysis In: A. Klute, Methods of soil analysis, Part 1-Physical and mineralogical methods, 2nd edition, Soil Sci. Soc. Am. Madison, Wiscon. USA. 383-409.
  14. Gregorich, E. G., M. R. Carter, D. A. Angers, C. M. Monreal, and B. H. Ellert. 1994. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Soil Sci. Can. J. 74: 367-385.
  15. Liao, S. H. 1994. Relationships among soil chemical properties, topography and plant species in lower montane subtropical rainforest by redundancy analysis. Master thesis, Graduate Institute of Botany, National Taiwan University (In Chinese, with English abstract). pp.125.
  16. Miller, R. H. and D. R. Keeney. 1989. Methods of soil analysis. Part 2. Chemical and properties hief ASA publication 3th edit.
  17. Ollinger S.V., J. D. Aber, P. B. Reich and R. Freuder. 2002. Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Glob Chang Biol. 8:545–562.
  18. Pierson, F. B., and D. J. Mulla. 1990. Aggregate stability in the Palous region of Washington: Effect of landscape position. Soil Sci. Soc. Am. J. 54: 407-1412.
  19. R., Y. Kalra, B. Vaughan, and A. M. Wolf. 1990. Soil analysis handbook of refrence methods. CRC press. 1st Edit, pp. 264.
  20. Soil survey laboratory staff. 1996. Soil Survey laboratory methods manual. Version 3. Soil Survey investigation. Rep. No. 42. USDA. NRCS. Lioncoln, NE. pp. 643.
  21. Sparks, D. L. 1996. Methods of soil analysis. Part 3. Chemical Methods. Soil Science Socitey of America, Madison, Wisconsin, USA, pp. 1390.
  22. Tsui, C. C., Z. S. Chen, and C. F. Hsieh. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma. 123: 131- 142.
  23. Van Breemen, N. and A. C. Finzi. 1998. Plant-soil interactions: ecological aspects and evolutionary implications. Biogeochemistry 1-2: 1-19.
  24. Venterea, R., G. Lovett, P. Groffman, and P. Schwarz. 2003. Landscape patterns of net nitrification in a northern hardwood-conifer forest. Soil Sci. Soc. Am. J. 67: 527–539.
  25. Walker, P. H., G. F. Hall, R. Protz.1968. Relation between land from parameters and soil properties. Soil. Sci Soc. Am. J., 32:101 -104.