اصلاح خاک‌های آلوده به پیرین با استفاده از نانو ذرات آهن صفر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشگاه آزاد اسلامی واحد کرج

2 استادیار، عضو هیأت علمی مؤسسه تحقیقات خاک و آب

چکیده

هیدروکربن­های چند حلقه­ای آروماتیک  آلاینده­هایی هستند که به دلیل مقاومت در برابر تجزیه و خواص شدید سرطان­زائی یا جهش­زائی، از نگرانی­های عمده­ی زیست­محیطی به شمار می­روند. نانو ذرات آهن صفر تنها انواعی از نانو ذرات هستند که برای استفاده در سطح اراضی به منظور اصلاح محیط زیست استفاده می شوند. لذا این تحقیق با هدف بررسی تأثیر نانو ذرات آهن صفر در حذف پیرین و بررسی تأثیر استفاده از شن و کاتالیزور پالادیوم در افزایش راندمان حذف پیرین به انجام رسید. نانو ذرات آهن، نانو ذرات آهن حمایت شده با پالادیوم، و نانو ذرات آهن پوشش داده روی شن ساخته شد و به دو خاک که با غلظت مشخصی از پیرین آلوده گردیده بود، افزوده گردید. پس از انجام آزمایش  غلظت پیرین استخراج شده از خاک با دستگاه HPLC اندازه­گیری گردید. نتایج نشان داد در خاک سیاهکل با03/5=pH کمترین و بیشترین درصد حذف پیرین توسط نانو ذرات آهن صفر در تیمارهای 025/0 و 15/0 گرم نانو ذره در گرم خاک، به ترتیب 54/46 % و 88/68% بود. در همین خاک برای نانو ذرات حمایت شده با پالادیوم درصد حذف پیرین از 61/54% تا 79/67% به ترتیب در تیمارهای 00625/0 و 15/0 گرم نانو ذره در گرم خاک بود. درصد حذف پیرین در تیمار نانو ذرات آهن پوشش داده روی شن بین 68/50% تا 32/77% در مقادیر 00625/0 و 1/0 گرم نانو ذره در گرم خاک بود. در خاک لاهیجان با 72/3pH= کمترین و بیشترین درصدحذف پیرین توسط نانو ذرات آهن صفر و  نانوذرات حمایت شده با پالادیوم به ترتیب در تیمارهای 00625/0 و 15/0مشاهده شد. این مقادیر برای نانو ذرات آهن صفر بین 8/54% تا 03/63% و برای نانوذرات حمایت شده با پالادیوم بین 45/57% تا 03/80% بود. دامنه­ی تأثیر نانو ذرات آهن پوشش داده روی شن در حذف پیرین از 04/61% تا 29/78% به ترتیب در تیمارهای 00625/0 و1/0 گرم نانو ذره در گرم خاک بود. لذا با توجه به عدم اختلاف معنی­دار اثر نانو ذرات پوشش­داده شده روی شن با دو نوع ذره­ی دیگر، استفاده از نانو ذرات پوشش­داده شده روی شن برای حذف پیرین توصیه می شود.

کلیدواژه‌ها


عنوان مقاله [English]

Remediation of Pyrene–contaminated Soils Using Nanozerovalent Iron Particles

نویسندگان [English]

  • Z. Hajatpour 1
  • M.H. Davoudi 2
  • K. Shahbazi 2
1 MSc. student, Soil Science Department; Islamic Azad University; Karaj, Iran
2 Assistant professor, Soil & Water Research Institute
چکیده [English]

Polycyclic aromatic hydrocarbons are contaminants of major concern in environmental issues due to their carcinogenic or mutagenic characteristics. Nanozerovalent iron particles are unique nano particles applied for environmental remediation. Nanozerovalent iron particles, palladium supported nanozerovalent iron, and iron coated sand particles were prepared and applied to two soil samples polluted with a particular concentration of pyrene. Afterwards, when the treatment process was completed, the remaining pyrene levels were extracted and measured by HPLC. In Siyahkal soil sample with a pH of 5.03, the least and the highest percentage of Pyrene removal by Fe0 were observed in, respectively, 0.025 and 0.15 (g Fe0.g -1soil) treatments and amounted to, respectively, 46.54% to 68.88%. For bimetalic Fe0/Pd particles, the minimum and maximum levels of pyrene elimination occurred at 0.00625 and 0.15 (g Fe0.g -1 soil) treatments and were, respectively, 54.61%  and 67.79%. The least and maximum amount of pyrene removed by Fe0 coated sand particles were  50.68% and 77.32% in 0.00625 and 0.1 (g.g -1 soil) treatments, respectively. In the Lahijan soil sample with the pH of 3.72, the minimum and maximum percentage of pyrene removal were observed at 0.00625 and 0.15 () treatments, which were 54.8% and 63.03% for Fe0 and 57.45% and 80.03% for Fe0/Pd. The range of Pyrene ejection by nZVI coated on sand particles changed from 61.04% to 78.29% for 0.15 and 0.1 (g.g -1 soil), respectively.   

کلیدواژه‌ها [English]

  • Polycyclic aromatic hydrocarbons
  • nano particles
  • Contaminants
  1. Blowes, D. W., C. J. Ptacek, and J. L. Jambor. 1997. In situ remediation of Cr (Vr) contaminated groundwater using permeable reactive walls:Laboratory studies. Environ. Sci. 31:3348–3357.
  2. Chang, M.C., Y. S. Hung, W. P. Hsieh, and M. C. Wang. 2007. Remediation of Soil Contaminated with Pyrene Using Ground Nanoscale Zero-Valent Iron.J. Air & Waste Manage. Assoc. 57:221–227.
  3. Chen, Z., Jin, Z. Chen, M. Megharaj, and R. Naidu. 2011. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J. Colloid Interface Sci. 15:601-607.
  4. Choe, S., S.H. Lee, Y. Chang, K.Y. Hwang, and J. Khim. 2001. Rapid Reductive Destruction of Hazardous Organic Compounds by Nanoscale Fe0. Chemosphere. 42:367-372.
  5. Cundy, A. B., L. Hopkinson, and R. L. D. Whithby. 2008. Use of iron-based technologies in contaminated land and groundwater remediation:A review. Sci. Total Environ. 400: 42-51.
  6. Doong, R. A., and Y. A. 2006. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. Chemosphere 64:371-378.
  7. Farrell, J., M. Kason, N. Melitas, and T. Li. 2000. Investigation of the Long-Term Performance of Zero-Valent Iron for Reductive Dechlorination of Trichloriethylene. Environ. Technol. 34:514-521.
  8. Ferrarese, E., G. Andreottola, Aura Oprea. 2008. Remediation of PAH-contaminated sediments by chemical oxidation. J. Hazardous Mater. 152:128-139.
  9. Fiedor, J. N., W. D. Bostick, R. J. Jarabek, and J. Farrel. 1998. Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy. Environ. Sci. Technol. 32:1466–1473.
  10. Gao, Y., Y. Zeng, Q. Shen, W. Ling, and J. Han. 2009. Fractionation of Polycylic Aromatic Hydrocarbon Residues in Soils. J. Hazardous Mater. 172:897-903.
  11. Gillham, R. W., and S. F. O’Hannesin. 1994. Enhanced degradatinon of halogenated aliphatics by zero-valent iron. Ground Water 32:958–967.
  12. He, F., M. Zhang, T. Qian, and D. Zhao. 2009. Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. Colloid Interface Sci.. 334:96-102
  13. He, F., D. Zhao, J. Liu, and C. B. Robert. 2007. Stabilization of Fe−Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Indust. Eng. Chem. Res. 46: 29-34.
  14. Huang, Y. H., T. C. Zhang, P. J. Shea, and S. D. Comfort. 2003. Effects of oxide coating and selected cations on nitrate reduction by iron metal. J. Environ. Qual. 32:1306–1315.
  15. Huang, X. D., Y. El-Alawi, D. M. Penrose, B. R. Glick, B. M. Greenberg. 2003. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut. 130: 465-476.
  16. Jiemvarangkul, P., W. Zhang, and H. Lien. 2011. Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem. Engin. J. 170:482–491.
  17. Kulik, N., A. Goi, M. Trapido, T. Tuhkanen. 2006. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J. Environ. Manag. 78:382-391
  18. Kanel, S. R., B. Manning, L. Charlet, and H. Choi. 2005. Removal of arsenic(III) from groundwater by nano scale zero-valent iron. Environ. Sci. and Technol.. 39:1291–1298.
  19. Karimi-Lotfabad, S., M.A. Pickard, and M.R. Gray. 1996. Reactions of polynuclear aromatic hydrocarbons on soil. Environ. Sci. Technol. 30:1145-1151.
  20. Kluyev, N., A. Cheleptchikov, E. Broodsky, V. Soyfer, and V. Zhilnikov. 2002. Reductive Dechlorination of Polychlorinated Dibenzo-p-Dioxins by Zerovalent Iron in Subcritical Water. Chemosphere 46:1293-1296.
  21. Liao, C .J., T., Chung, W. L. Chen, and S. L. Kuo. 2006. Treament of pentachlorophenol-contaminated soil using nano-scale zero-valent iron with hydrogen peroxide. J. Molecular Catalysis A: Chemical 265:189-194.
  22. Lien, H., and W. Zhang. 2001. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids 191:97-105.
  23. Luthy, R.G., D.A. Dzombak, A. Peters, S.B. Roy, A. Ramaswami, D.V. Nakles, and B.R. Nott. 1994. Remediating tar-contaminated soils at manufactured gas plant sites—technological challenges. Environ. Sci. Technol. 28:266A-276A.
  24. Park, J., S. D. Comfort, P. J. Shea, and J. S. Kim. 2005. Increasing Fe0-mediated HMX destruction in highly contaminated soil with didecyldimethylaammonium bromide surfactant. Environ. Sci. Technol. 39:9683–9688.
  25. Ponder, S. M., J. G. Darab, T. E. 2000. Remediation of Cr (VI) and Pb(II) aqueous solutions using supported, nanoscale zerovalent-iron. Environ. Sci. Technol. 34:2564–2569.
  26. Satapanajaru, T., P. Anurakpongsatorn, and P. Pengthamkeerati. 2008. Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air Soil Pollut. 192:349–359.
  27. Satapanajaru, T., P. Anurakpongsatorn, and P. Pengthamkeerati. 2006. Remediation of DDT-contaminated water and soil by using pretreated iron byproducts from the automotive industry. J. Environ. Sci. Health Part B. 41:1291–1303.
  28. Shea, P. A., T. A. Machacek, and S. D.  2004. Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environ. Pollut. 132:183–188.
  29. Shi, Z., T. Nurmi, and P. G. Tratnyek. 2011. Effects of nano zero-valent iron on oxidation-reduction potential. Environ. Sci. Technol. 45:1586-1592.
  30. Shi, L., Y. Lin, X. Zhang, and Z. Chen. 2009. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Colloid Interface Sci. 334:96-102.
  31. Shu, H. Y, M. C. Chang, C. Chen, P. Chen . 2011. Using resin supported nano zero-valent iron particles for decoloration of acid blue 113 azo dye solution. J. Hazard. Mater. 45:2191-2198.
  32. Sun, Y. P., X. Q. Li, J. Cao, W. X. Zhang, and H. P. Wang. 2006. Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 120:47–56.
  33. Suntornchot, P., T. Satapanajaru, and S.D. Comfort. 2010. Application of nano-zero valent iron for treating metolachlor in aqueous solution. World Academy Engin. Technol.
  34. Wang, C. B., and W. X. Zhang. 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31:2154-2156.
  35. Zhang X., S. Lin, Z. Chen, M. Megharajb, and R. Naidu. 2011. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution:Reactivity, characterization, and mechanism. Water Res. 45:3481-3488.
  36. Zhang, W. X., 2003. Nanoscale iron particles for environmental remediation: an overview. J. Nano Particle Res. 5:323–332.
  37. Zhang, W. X., C. B. Wang, and H. L. Lien. 1998. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today . 40:387-395.