Effects of Flooding and Fire on Aggregate Stability: A Case Study in the Soils of Lakan Nursery in Guilan Province

Document Type : Research Paper

Authors

1 Former MSc student. Department of soil science, Faculty of Agriculture Science, university of Guilan

2 Associate Professor. Department of soil science, Faculty of Agriculture Science, university of Guilan

3 Associate Professor. Department of Agronomy and Plant Breeding, Faculty of Agriculture Science; university of Guilan

Abstract

This study was conducted in order to investigate the effects of flooding and fire on status of aggregate stability and soil structure in Lakan forest in Guilan province. Soil sampling was carried out with three replicates from three depth 0-3, 3-6 and 6-9 cm in the representative locations subjected to flooding, fire, and the control site. The aggregate stability was measured by MWD, GMD and fraction dimension indices by dry and wet sieve tests. Results of this study indicated that in flooded soil, clay and silt values (at all depths), organic carbon, bulk density, and aggregate density values (at the first depth i.e. 0-3cm) significantly increased, but aggregate density value (at the second depth i.e.3-6cm) and sand content (at all depths) significantly decreased as compared to the control soil (no flooding and no fire). In burned soils, silt values (at the second depths) and bulk density values (at the first depth) significantly increased and clay and OC values (at the first depth) and CEC significantly decreased as compared to the control soil. Investigation on aggregate stability indices (MWD, GMD and D) showed that these characters increased at all depths in flooded soil and decreased at the first depth of the burned soil as compared to the control soil. This happened probably due to changes in the clay and OC. Furthermore, aggregate stability indices in wet sieve test had stronger relationships with soil properties. Generally, the effects of flooding and fire phenomena were different: flooding improved aggregate stability, but fire produced undesirable effects.
 

Keywords


  1. سپاس­خواه، ع.، س.ع. موسوی، و ی. لاری. 1379. ارزیابی ابعاد فرکتالی برای تعیین ثبات خاکدانه. تحقیقات کشاورزی ایران. 19: 114-99.
  2. سررشته­داری، ا. 1383. اثرات طرح پخش سیلاب بر نفوذپذیری و حاصلخیزی خاک. مجله پژوهش و سازندگی. 62 : 93-83.
  3. فخری، ف.، م. جعفری، م.ح. مهدیان و ح. آذرنیوند. 1384. تأثیر پخش سیلاب بر برخی ویژگی­های فیزیکی و شیمیایی خاک ایستگاه تحقیقاتی تنگستان – استان بوشهر. فصلنامه پژوهشی تحقیقات مرتع و بیابان ایران. 3: 248-233.
  4. قضاوی، غ. ر.، و ع. ع. ولی. 1381. اثرات پخش سیلاب بر روی بعضی خصوصیات فیزیکی و شیمیایی خاک (مطالعه موردی پخش سیلاب فتح آباد داراب). مجله علوم کشاورزی و منابع طبیعی گرگان. 9: 25-17.
  5. محمدی، ج، و ف. رئیسی­گهرویی. 1382. توصیف فرکتالی اثرات قرق دراز مدت و چرای مفرط بر الگوی تغییرات مکانی شماری از ویژگی­های شیمیایی خاک. علوم و فنون کشاورزی و منابع طبیعی.4: 36-25.
  6. مهدیان، م. ح.، ا. حسینی چگینی، م.ح. شریعتی، و ک. خاکسار. 1382. بررسی تأثیر پخش سیلاب در تغییرات فیزیکو- شیمیایی خاک (مطالعه موردی طرح پخش سیلاب قوشه دامغان در استان سمنان). مجله پژوهش و سازندگی. 61: 44-39.
  7. Andreu, V., A. Imeson, and J.L. Rubio. 2001. Temporal changes in soil macro and microaggregation induced by forest fires and its incidence on water erosion. Catena 44:69–84.
  8. Blake, G.R., and K.H. Hartge. 1986. Bulk density, p. 363-375. In: A. Klute (ed.), Methods of Soil Analysis, 2nd ed. Part 1- Physical and mineralogical methods, Agronomy Monograph, Vol. 9. ASA and SSSA, Madison, WI.
  9. Certini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia. 143: 1–10.
  10. Chepil, W.S. 1950. Methods of estimating apparent density of discrete soil grains and aggregates. Soil Sci. 70:351-362.
  11. DeBano, L.F., D. Neary, and P.F. Folliott. 2005. Soil physical properties. In: Neary, K.C. Ryan and L.F., DeBano (ed.). Wildland fire in ecosystems, effects of fire on soil and water. Gen. Tech. Rep. RMRS-GTR-42-Vol.4. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 250 pp.
  12. Filho, C.C., A. Lourenco, M. Guimaraes, F. de and I.C.B. Fonseca. 2002. Aggregate stability under different soil management systems in red latosol in the state of Parana, Brazil. Soil Till. Res. 65, 45–51.
  13. Flint, A., and L. Flint. 2002a. Particle density. p. 229-240. In: J.H. Dane, and G. C. Topp, (ed.), Methods of soil analysis, Part 4- Physical methods. Agronomy Monograph, Vol. 9. ASA and SSSA, Madison, WI.
  14. Flint, A., and L. Flint. 2002b. Porosity. p. 241-254. In: J. H. Dane, and G. C. Topp, (ed.), Methods of soil analysis, Part 4- Physical methods. Agronomy Monograph, Vol. 9. ASA and SSSA, Madison, WI.
  15. García-Corona, R., E. Benito, E. DeBlas, and M.E. Varela. 2004. Effects of heating on some soil physical properties related to its hydrological behaviour in two northwestern Spanish soils. International Journal of Wildland Fire 13:195–199.
  16. Gee, G.W., and D. Or. 2002. Particle-size analysis. p. 255-293. In: J. H. Dane, and G. C. Topp (ed.), Methods of soil analysis, Part 4- Physical methods. Agronomy Monograph, Vol. 9. ASA and SSSA, Madison, WI.
  17. Giovannini, G., S. Lucchesi, and M. Giachetti. 1988. Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility. Soil Sci. 146:255–262.
  18. Guerrero, C., J. Mataix-Solera, F. García-Orenes, I. Gómez, and J. Navarro-Pedreño. 2001. Different patterns of aggregate stability in burned and restored soils. Arid Land Research and Management 15: 163–171.
  19. IUSS, Working Group WRB. World reference base for soil Resources: 2nd edition. World Soil Resources Reports No. 103. FAO, Rome.
  20. Mataix-Solera, J., and H. Doerr. 2004. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forest in southeastern Spain. Geoderma 118:77–88.
  21. Mataix-Solera, J., A. Cerdà, V. Arcenegui, A. Jordán, and L.M. Zavala. 2011. Fire effects on soil aggregation: A review. Earth-Science Reviews 109: 44–60.
  22. Mazurak, A.P. 1950. Effect of gaseous phase on water-stable synthetic aggregates. Soil Sci. 69:135-148.
  23. Morgan, R.P.C. 2005. Soil erosion and conservation. 3rd edition. Blackwell Publishing, 304 pp.
  24. Nelson, D.W., and L.E. Sommers. 1996. Total carbone, organic carbone, and organic matter. p. 961-1010. In: D. L. Sparks, (ed.), Methods of soil analysis, Part 3- Chemical methods. Agronomy Monograph, Vol. 9. ASA and SSSA, Madison, WI.
  25. Nimmo, J.R., and K.S. Perkins. 2002. Aggregate stability and size distribution. p. 317-328. In: J. H. Dane and G. C. Topp (ed.), Methods of soil analysis, Part 4- Physical methods. Agronomy Monograph, Vol. 9. ASA and SSSA, Madison, WI.
  26. Oswald, B.P., D. Davenport, and L.F. Neuenschwander. 1999. Effects of slash pile burning on the physical and chemical soil properties of Vassar soils. J Sustainable For. 8:75–86.
  27. SAS Institute, 2002. SAS/STAT User’s Guide. In: Version 9.1., SAS Institute Cary, NC.
  28. 2007. SPSS for Windows, Version 16.0. SPSS Inc., Chicago, Illinois, USA.
  29. Sumner, M.E., and W.P. Miller. 1996. Cations exchange capacity and Exchange Coefficients. p. 1201-1230. In: D.L. Sparks. (Ed.), Methods of soil analysis, Part 3- chemical methods. Agronomy Monograph, Vol. 9. ASA and SSSA, Madison, WI.
  30. Turcotte, D.L. 1986. Fractals and fragmentation. J. Geophys. Res. 91 (B2):1921–1926.
  31. Úbeda, X. 1999. Structural changes on soils after forest fires. In: Bech, (ed.), Extended Abstracts of 6th International Meeting of Soils with Mediterranean Type of Climate. Universitat de Barcelona, Spain.
  32. USDA, Soil Survey Staff. 2010. Keys to soil taxonomy, (11th ed.), U.S. Dep. Agric., Soil Conserv. Serv., Washington, DC.
  33. Van Bavel, C.H.M. 1949. Mean weight diameter of soil aggregates as a statistical index of aggregation. Soil Sci. Soc. Am. Proc. 14:20-23.
  34. Vázquez, J., V. Petrikova, MC. Villar, and T. Carballas. 1996. Use of poultry manure and plant cultivation for the reclamation of burnt soils. Biol Fertil. Soils 22:265–271.