Modeling of Land Production Potential for Irrigated Winter Wheat in Aghili Plain, Khuzestan Province

Document Type : Research Paper

Authors

1 PhD student, Tehran University, and Assistant Professor of Soil and Water Research Institute

2 Professor, Tehran University

3 Associate Professor, Tehran University

Abstract

The study area is located in south west of Iran, Agili plain, Gotvand, Khuzestan province. Based on Shoushtar synoptic station, the climatic type of the area is semi-desertic. The maximum daily air temperature is 46.6 °C in June and the minimum daily air temperature is 8.1 °C in December. The annual rainfall is about 324 mm. The aim of this research was to elaborate an approach for the prediction of the land production potential for irrigated winter wheat, taking into account the environmental condition in the study area. The results showed that irrigated potential yield based on crop growth model method was 8041 kg/ha in the study area and land production potential for irrigated wheat, taking into account the effect of soil limitations, ranged between 2454 to 6687 kg/ha with Square Root method, and between 2296 to 6756 kg/ha for Storie method. The reduction in yield was due to high calcium carbonate, poor drainage, salinity and alkalinity, and management method. For evaluation of the model, three different regression methods, namely, standard multiple regression, stepwise regression, and curve estimation were used for comparison of the yield predicted  by the model with the yield harvested by the farmers. Based on the results, coefficient of determination (r2) for predicted yield with Storie, square root, and characteristics methods were 0.83, 0.80, and 0.33. These results show that the predicted yield can estimate the observed yield with 83 percent accuracy for Storie method, 80 percent for Square Root method, and 33 percent for Land Characteristics. Meanwhile, the Root Mean Square Error was, respectively, 598, 648, and 1258 kg/ha. Based on the results, it can be concluded that Storie method can predict yield better that the other methods because of higher coefficient of determination and lower RMSE.

Keywords


  1. وزارت جهاد کشاورزی، 1390. آمارنامه کشاورزی جلد اول محصولات زراعی 89-1388. دفتر آمار و فناوری اطلاعات، معاونت برنامه­ریزی و اقتصادی، وزارت جهادکشاورزی. 137 ص.
  2. سیدجلالی ، س.ع.، 1375. ارزیابی تناسب و تعیین مدل پتانسیل تولید اراضی برای گندم در منطقه میان آب شوشتر، استان خوزستان، نشریه فنی شماره 1064، موسسه تحقیقات خاک و آب.
  3. سیدجلالی ، س.ع.، زارعیان، ع.، زینالدینی، ع.، و سعادتمند، غ.، a تعیین تناسب اراضی و تخمین پتانسیل تولید گندم در خاک‌های گچی استان‌های خوزستان، فارس، اصفهان و کرمان، نشریه فنی شماره 1345، موسسه تحقیقات خاک و آب.
  4. سیدجلالی ، س.ع.، زارعیان، ع.، زینالدینی، ع.، و سعادتمند، غ.، بنی نعمه، ج. a تعیین تناسب اراضی و تخمین پتانسیل تولید گندم در خاک‌های آهکی استان‌های خوزستان، فارس، اصفهان و کرمان، نشریه فنی شماره 1341، موسسه تحقیقات خاک و آب.
  5. فرج نیا، ا.، 1386. ارزیابی تناسب اراضی و تعیین پتانسیل تولید چغندر قند در دشت یکانات مرند. چغندر قند. 23 (1): 54-43
  6. Becker-Reshef a, E. Vermote a, Lindeman b, C.  Justice. 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment 114, 1312–1323.
  7. Budong Q, Reinder De J, and G. Samuel. 2009. Multivariate analysis of water-related agroclimatic factors limiting spring wheat yields on the Canadian prairies. Europ. J. Agronomy 30, 140–150
  8. Charles, J., Godfray, J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir,J.F., Pretty, J., Robinson, S., Thomas, S.M., and C., Toulmin. 2010. Food security: the challenge of feeding 9 billion people. Science (Washington, DC) 327, 812–818.
  9. Chipanshi, C., Ripley, E. A., & , R. G., Lawford. 1999. Large-scale simulation of wheat yields in a semi-arid environment using a crop-growth model. Agricultural Systems, 59, 57−66.
  10. Doraiswamy, P. C., Moulin, S., Cook, P. W., & V., Stern. 2003. Crop yield assessment from remote sensing. Photogrammetric Engineering and Remote Sensing, 69, 665−674.
  11. Draper, N.R., Smith, H., 1966. Applied Regression Analysis. Wiley, New York 7407pp
  12. Food and Agricultural Organization. 1979. Report on agro-ecological zones project. Vol. 1: Methodology and result for Africa. World soil resources report No. 48, FAO, Rome.
  13. Keshavarzi, A; Sarmadian, F; Heidari, A and M. Omid. 2010. Land Suitability Evaluation Using Fuzzy Continuous Classification (A Case Study: Ziaran Region). Modern Applied Science. Vol. 4, No. 7.
  14. Khiddir, S. M. 1986. A statistical approach in the use of parametric systems applied to the FAO framework for land evaluation. Ph. D. Thesis, State university of Ghent, Belgium.
  15. Manasah S., Mkhabel., Paul R. and 2012. Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada Agricultural Water Management 110, 16– 24.
  16. Maselli, F., & , F, Rembold. 2001. Analysis of GAC NDVI data for cropland identification and yield forecasting in Mediterranean African countries. Photogrammetric Engineering and Remote Sensing, 67, 593−602.
  17. , F.L.M. ., Maas., S.J., Gonz M.P., lez-Dugo., F. Mansilla, N. Rajan, Gavil, P., and J. Donguez. 2012. Monitoring regional wheat yield in Southern Spain using the GRAMI model and satellite imagery. Field Crops Research 130, 145–154
  18. Pinter, P. J., Jackson, R. D., Idso, S. B., & Reginato, R. J. (1981). Multidate spectral reflectances as predictors of yield in water stressed wheat and barley. International Journal of Remote Sensing, 2, 43−48.
  19. Chen, Z. X., Ren, J. Q., Zhou, Q. B., & , H. J, Tang. 2008. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. International Journal of Applied Earth Observation and Geoinformation, 10, 403−413.
  20. Shahbazi,F., Jafarzadeh, A.A., Sarmadian, F., Neyshaboury, M.R., Oustan, Sh., Anaya- Romero, M. andD. De la Rosa.2009. Suitability of Wheat, Maize, Sugar Beet and Potato Using MicroLEIS DSS Software in Ahar Area, North-West of Iran. American-Eurasian J. Agric. & Environ. Sci., 5 (1): 45-52,
  21. Soil survey staff. 2010. Keys to soil taxonomy. Eleventh Edition. USDA. NRCS. 338pp.
  22. Storie, R. E. 1978. Storie index soil rating (revised). Spec. publ. Div. Agric. Sci. No. 3203. University of Calif. Berkley, USA.
  23. Sys, C, E,Van Ranst. J. Debaveye. 1991. Land evaluation, Part I and II. GeneralAdmhnstration for development coopration ,Brussels.
  24. Sys, C, E,Van Ranst. J. Debaveye.1993. Land evaluation, Part III. Crop requitements. General Admhnstration for development coopration ,Brussels.
  25. Tang, H.J, and E. Van Ranst. 1992. Testing of fuzzy set theory in land suitability assessment for rainfed grain maize production. Pedologie, 42:129-147.
  26. Taru, , Alosuo. K., Christian. K., Carlos.  A., Petr. H., Lavinkad, M., Moriondo. 2011. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Europ. J. Agronomy 35, 103– 114
  27. Toscano, P., Ranieri, R., Matese, A. ., Vaccari, F.P., Gioli , B. A. Zaldeia, M. Silvestri , C. Ronchi,P. La Cava, J.R. Porter and F. Miglietta. 2012. Durum wheat modeling: The Delphi system, 11 years of observations in Italy. Europ. J. Agronomy 43 (2012) 108–118

28  Wall, L., Larocque, D., & P. M., Leger. 2007. The early explanatory power of NDVI in crop yield modeling. International Journal of Remote Sensing, 29, 2211−2225.