Effectiveness of IAA and ACC-deaminase Producing Fluorescent Pseudomonads on Growth of Pistachio Seedlings

Document Type : Research Paper

Authors

1 M.Sc., of Soil Science, Vali-e-Asr University of Rafsanjan

2 Assistant Professor, Departmentof Soil Science, Vali-e-Asr University of Rafsanjan

3 Associate Professor Department of Soil Science, Vali-e-Asr University of Rafsanjan

Abstract

The aim of this study was to investigate the effectiveness of isolates capable of producing IAA and utilizing ACC as the sole source of nitrogen on growth of pistachio seedlings. In the present study, based on fluorescent properties of isolates in King B medium, 52 colonies of fluorescent pseudomonad were randomly isolated from the rhizosphereof pistachio seedlings and then purified. These strains were identified according to the microscopic, physiological, and biochemical characteristicstestsrelated to species determination. Study results showed that 49 of the 52 isolates belonged toPseudomonasfluorescens species and, due to the lack of conformitywith the characteristicsin the Bergey book, three isolates wereidentified as Pseudomonas sp. Then, isolates were evaluated for the ability to produce IAA and utilize ACC. The results indicated that all the strainswere able toproduce IAA and 62% ofwhichwereable toutilizeACCas the sole sources of nitrogen. In a greenhouse experiment, the effectiveness of the six isolatesthat were able to utilize ACC and produce different amounts of IAA were tested on the pistachio seedlings. The results showed that application of most of the strains significantly increased leaf number, leaf area, and shoot fresh and dry weight of pistachio seedlings.

Keywords


  1. اخگر، ع. ر. و ک. خاوازی. 1388. نقش آنزیم ACC دآمیناز باکتریایی در کاهش اثرات منفی شوری بر رشد کلزا. نشریه آب و خاک (علوم و صنایع کشاورزی). 156-154 :(1)24.
  2. اخگر، ع. ر.، ن. صالح راستین، ک. خاوازی و ع. ر. شعرای­نجاتی. 1387. جداسازی، شناسایی و تعیین فعالیت آنزیم ACC Deaminaseباکتری­های غالب ریزوسفر کلزا در خاک­های شور. مجله علوم خاک و آب. 81-69 :(1)22.
  3. جلیلی، ف.، ک. خاوازی، ا. پذیرا، ع. ر. نجاتی و ه. اسدی­رحمانی. 1388. تأثیر سودوموناس­های فلورسنت دارای فعالیت آنزیم ACC Deaminase درتعدیل اثرات مضر شوری بر کلزا در مرحله جوانه زنی. مجله پژوهشهای خاک (علوم خاک و آب).106- 91 :(1)23.
  4. عرب، س. م.، غ. اکبری، ح. علیخانی، م. ح. ارزانش و ا. ا. دادی. 1387. بررسی توانایی تولید اکسین توسط باکتری جداسازی شده بومی جنس آزوسپیریوم و ارزیابی اثرات محرک رشدی جدایه برتر بر گیاه ذرت شیرین. مجله پژوهشهای زراعی ایران. 222-217 :(6)2.
  5. Abbas- Zadeh, P., N. Saleh- Rastin, H. Asadi- Rahmani, K. Khavazi, A. Soltani, A. R. Shoary- Nejati, and M. Niransari. 2010. Plant growth, promoting activities of fluorescent Pseudomonads isolated from the Iranian soils. Actaphysoil.plant. 32: 281-288.
  6. Abeles, F. B., D. W. Morgan, and M. E. Saltvit Jr. 1992.Ethylene in plant Biology.2nded, Acadmeic Press. New York.
  7. Ahmad, F., I. Ahmad, and M. Sahir Khan. 2005. Indole acetic acid production by indigenous isolates of azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Boil. 29:29-34.
  8. Ahmad, F., I. Ahmad, and M. S. Khan. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiol. Res. 163:173-181.
  9. Benet, E., S. Tuzan, C. P. Chanway, and S. Enebak. 2001. Alteration in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can. J. Microbiol. 47:793-800.
  10. Bossis, E., P. Lemenceau, X. Latour, and L. Gardan. 2000. The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agron. J. 20:51-63.
  11. Glick, B. R. 1995. The enhancement of plant growth by free-Living bacteria.Can. J. Microbiol. 41:109-117.
  12. Glick, B. R., D. M. Penrose and J. Li. 1998.A model for the lowering of plant ethylene concentration by plant growth-promoting bacteria. J. Theor. Biol. 190:63-68.
  13. Gravel, V., A. Hani, and R. J. Tewddell. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putidaorTrichodermaatroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochem. 39:1968-1977.
  14. Hoagland, D. R., and D. I. Arnon. 1950. The water–culture method for growing plants without soil. College of Agriculture, Univ of Cal Berkeley, Cal. Cicrcular 347.
  15. Karnwal, A. 2009.Production of Indoleacetic acid by fluorescent Pseudomonas in the presence of L-tryptophan and rice-root exudates. J. Plant Pathol. 91:61-63.
  16. Khakipour, N., K. Khavazi, H. Majallali, E. Pazira, and H. Asadirahmani. 2008. Production of Auxin Hormone by fluorescent Pseudomonas. American-Eurasion J. Agric. Environ. Sci. 4(6):678-692.
  17. Kloepper, J. W. 2003. A review of mechanisms for plant growth promoting by PGPR.Aurburn University, Auburn, Alabama 36849. USA.
  18. Okon, Y. 1985. Azospirillum as potential inoculant for agriculture.Trends Biotech. 3:223-228.
  19. Pal, K. K., R. Dey, D. M. Bhatt, and S. M. Chauhan. 2001. National research center for groundnut, ivnagair road, PB. No 5, Junagadh-36, Gujarat, India.
  20. Patten, C. L., and B. R. Glick. 1996. Bacterial biosynthesis of IAA. Can. J. Microbiol. 42:207-220.
  21. Patten, C. L., and B. R. Glick. 2002. Role of Pseudomonas putidaIndoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68:3795-3801.
  22. Paul, D., and Y. R. Sarma. 2006. Plant growth promoting rhizobacteria (PGPR)- mediated root proliferation in black pepper (Piper nigrum) as evidenced through GS Root Software. Arch. Phytopathol. Plant Prot. 39:1-4.
  23. Penrose, D. M., and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase containing plant growth-promoting rhizobacteria. Physiol. Plant. 118:10-15.
  24. Peyvandi, M., F. Farahani, M. HosseiniMazinani, Z. Noormohamadi, S. Ataii, and A. Asgharzade. 2010. Pseudomonas fluorescent and its ability to promote root formation of olive microshoots. J. Plant Prod. 4:63-66.
  25. Sarwer, M., and R. J. Kremer. 1995. Determination of bacterially derived auxins using a microplate method. Lett. Appl. Microbiol. 147:282-285.
  26. Shah, S., J. Li, B. A. Moffat, and B. R. Glick. 1998. Isolation and characterization of ACC deaminase genes from two different plant growth promoting rhizobacteria. Can. J. Microbiol. 44:833-843.
  27. Shahzad, S. M., A. Khalid, M. Archad, J. Tahir, and T. Mahmood. 2010. Improving nodulation, growth and yield of Cicerarietinum through bacterial ACC- deaminase induced changes in root architecture. Europ. J. Soil Biol. 46:342-347.
  28. Stepanova, A. N., J. Robertson-Hoyt, J. Yun, L. M. Benavente, D. Y. Xie, K. Dolezal, S. G. Jurgens, and J. M. Alonso. 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177-191.
  29. Wang, C., E. Knill, B. R. Glick, and G. Defago. 2000. Effect of transferring 1- aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gacA derivative CHA96 on their growth promoting and disease-suppressive capacities. Can. J. Microbiol. 46:898-907.
  30. Zahir, Z. A., M. Arshad, and W. T. Frankenberger. 2004. Plant growth promoting rhizobacteria: Application and perspectives in agriculture. Adv. Agron. 81:97-167.