Temporal Changes in Potassium Release from Phlogopitein The Rhizosphere of Alfalfa (Medicago sativa L.)

Document Type : Research Paper

Authors

1 M.Sc. Student of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran

2 Professor of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran

3 Associate Professor of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran

Abstract

Potassium is an essential element for plant growth thatis mostly supplied by K-bearing minerals in soils. The role of these minerals, which are mostly mica, in K supply for plants is well known. However, little information is available on the rate of K release from micaceous minerals with time.The objective of this study was to investigate the temporal changes of concentration and uptake of potassium from phlogopite by alfalfa. A pot experiment was conducted under greenhouse conditions. Growth medium was a mixture of quartz sand and phlogopite. The experimental design was a completely randomized factorial with 3 replicates. During 200 days of alfalfa cultivation, plants were irrigated with either a complete or K-free nutrient solution and distilled water as needed. At 40, 75, 110, 140, 165 and 200 days after cultivation, 3 replicates of each treatment were harvested and their K concentration and uptake were measured by flame photometer following dry ash extraction. Results indicated that the K concentration in plant tissues significantly decreased with time. In addition, phlogopite was able to maintain plant potassium concentration for more than 110 days in the sufficient range. Also, the parameters of growth and uptake rates showedsignificant changes with time. At the early stage of plant growth, both growth rate and K uptake were low.These parameters increased with time as the ability of root to extract potassium increased. At the end of the experiment, because of the plant age and also decline in potassium source, root power for potassium uptake diminishedand, thus, the amounts of plant growth rate and K uptake rates also decreased.

Keywords


  1. خوشگفتارمنش، امیرحسین.1386. ارزیابی وضعیت تغذیه­ای گیاه و مدیریت بهینه کودی. انتشارات دانشگاه صنعتی اصفهان. 158 صفحه.
  2. خیامیم، فاطمه. 1388. رهاسازی پتاسیم و تغییرات کانی­شناسی فلوگوپیت و موسکویت تحت تأثیر نوع گیاه و قارچ اندوفایت. پایان­نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان. 108 صفحه.
  3. طالبی­بداف، مهدی. 1387. تنوع ژنتیکی و تغییرات جمعیتی باکتری Sinorhizobiom melilotiدر همزیستی با ژنوتیپهای مختلف یونجه. پایان­نامه دکتری اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان. 192 صفحه.
  4. کریمی، هادی. 1381. یونجه. مرکز نشر دانشگاهی. 375 صفحه.
  5. ملکوتی، محمد جعفر، علی اصغر شهابی و کامبیز بازرگان. 1384. پتاسیم در کشاورزی ایران. انتشارات سنا، تهران. 292 صفحه.
  6. Barre, P., B. Velde, C. Fontaine, N. Catel and L. Abbadie. 2008. Which 2:1 clay minerals are involved in the soil potassium reservoir? Insights from potassium addition or removal experiments on three temperate grassland soil clay assemblages. Geoderma 146: 216–223.
  7. Benton Jones, J., B. Wolf. and A.  Mills. 1991. Plant Analysis Handbook, a Practical Sampling, Preparation, Analysis and Interpretation Guide. Micro-Macro Publishing, Inc, USA.
  8. Bertsch, P.M. and G.W. Thomas. 1985. Potassium status of temperate region soils, 131-162. In: R.D. Munson (Ed.), Potassium in Agriculture, ASA. CSSA. SSSA. Madison, WI.
  9. Fageria, N. K. and L. F. Stone. 2006. Physical, chemical, and biological changes in the rhizosphere and nutrient availability. J. Plant Nutr. 29: 1327-1356
  10. Hinsinger, P. and B. Jaillard. 1993. Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. J. Soil Sci. 44: 525-534.
  11. Hinsinger, P., B. Jaillard and E. Dufey. 1992. Rapid weathering of a trioctahedral mica by the roots of ryegrass. Soil Sci. Soc. Am. J. 56: 977-982.
  12. Huang, P.M. 1989. Feldspars, olivines, pyroxines, and amphiboles. PP. 975-1050. In: Dixon J.B., Weed S.B. (Eds.), Minerals in Soil Environment. Soil Sci. Soc. Am. Madison, WI.
  13. Jalali, M. and M. Zarabi. 2006. Kinetics of non-exchangeable potassium release and plant response in some calcareous soils. J. Plant Nutr. Soil Sci. 169: 194-204.
  14. Jalali, M. 2005. Release kinetics of non-exchangeable potassium in calcareous soils. Commun. Soil Sci. Plant Anal. 36: 1903-1917.
  15. Khademi, H. and J.M. Arocena. 2008. Kaolinite formation from palygorskite and sepiolite in rhizosphere soils. Clays Clay Miner. 56: 422-436.
  16. Leyval, C. and J. Berthelin. 1991. Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil. Sci. Soc. Am. J. 55:1009–1016.
  17. Li, X., D. Su and Y. Qinghua. 2007. Ridge-furrow planting of alfalfa( Medicago sativa L.) for improved rainwater harvest in rainfed semi-arid areas in northwest China. Soil Till. Res. 93: 117-125.
  18. Martin, H.W. and D. L. Sparks. 1985. On the behavior of nonexchangeable potassium in soils. Commun. Soil Sci. Plant 16: 133–162.
  19. Memon, Y.M., I.F. Fergus, J.D. Hughes and D.W. Page. 1988. Utilization of non-exchangeable soil potassoim in relation to soil type, plant species and stage of growth. Austra. J. Soil Res. 26(3): 489-496.
  20. Mengel, K. and K. Uhlenbecker. 1993 Determination of available interlayer potassium and its uptake by ryegrass. Soil Sci. Soc. Am. J. 57: 761–766.
  21. Moritsuka, N., J. Yanai and T. Kosaki. 2004. Possible processes releasing non-exchangable potassium from the rhizosphere of maize. Plant Soil. 258: 261-268.
  22. Nabiollahy, K., F. Khormali, K. Bazargan and Sh. Ayoubi. 2006. Forms of K as a function of clay mineralogy and soil development. Clay Miner. 41: 739-749.
  23. Naderizadeh, Z., H. Khademi and J. M. Arocena. 2010. Organic matter induced mineralogical changes in clay-sized phlogopite and muscovite in alfalfa rhizosphere. Geoderma.159: 296-303
  24. Norouzi, S. and H. Khademi. 2010 Ability of alfalfa (Medicago sativa L.) to take up potassium from different micaceous minerals and consequent vermiculitization. Plant Soil. 328 : 83-93
  25. Officer, S.J., R.W. Tillman, A.S. Palmer and J.S. Whitton. 2006. Variability of clay mineralogy in two New Zealand steep-land topsoils under pasture. Geoderma. 132: 427–440.
  26. Snap, S., R. Koide and J. Lynch. 1995. Exploitation of localized phosphorous patches by common bean roots. Plant Soil. 177: 211-218.
  27. Sparks, D.L. and P.M., Huang. 1985. Physical chemistry of soil potassium. PP. 201-276. In: Munson R.D., (Ed.), Potassium in Agriculture. ASA. CSSA. SSSA. Madison. WI.
  28. Spyridakis, D. E., S. G. Chester and S. A. Wilde. 1967. Kaolinization of biotite as a result of coniferous and deciduous seedling growth. Soil Sci. Soc. Am . Proc. 31: 203-210.
  29. Stegner, R. 2002. Plant Nutrition Studies. Lamotte company. Maryland. USA. 76 pages.
  30. Thompson, M.L. and L. Ukrainczyk. 2002. Micas. In: Dixon J.B., Schulze D.G. (Eds.), Soil Mineralogy with Environmental Applications, Soil Sci. Soc. Am. Madison, WI. 431-466.
  31. Wang, J.G., F.S. Zhang, X.L. Zhang and Y.P. Cao. 2000. Release of potassium from K-bearing minerals: Effect of plant roots under P deficiency. Nutr. Cycl. Agroec. 56:45-52.
  32. Yuan, L., J.G. Huang, X.L. Li and P. Christie. 2004. Biological mobilization of potassium from clay minerals by ectomycorhizal fungi and eucalypt seedling roots. Plant Soil. 262: 351-361.