Role of Soil Beneficial Bacteria in Increasing Phytoremediation Efficiency in Cadmium-Contaminated Soil

Document Type : Research Paper

Authors

1 Former M.Sc.Student, Tarbiat Modares University of Tehran. College of Agriculture. Soil Science Department

2 Associate Professor, Soil and Water Research Institute of Karaj. Biology Department

3 Professor, Tarbiat Modares University of Tehran. College of Agriculture. Soil Science Department

Abstract

Cadmium (Cd) is one of the most toxic pollutants whose concentration in soil has been rising due to the increasing application of phosphorus fertilizers in agricultural fields. Phytoremediation, an emerging low-cost and ecologically benign technology for decontamination of soils, is defined as the process of utilizing plants to absorb, accumulate and detoxify contaminants in soil through physical, chemical and biological processes. One of the problems of this method is slow growth rate of the selected plant. Use of plant growth promoting Rhizobacteria (PGPR), especially those containing ACC deaminase, stimulates growth of plants and, thereby,  improves bioremediation of Cd in contaminated soil. Therefore, to investigate the bacteria effect on the efficiency of Cd bioremediation by kale (Brassica oleraceae var. viridis), a pot-culture experiment was conducted in a completely randomized block design in the green house of agricultural college, Tarbiat Modares University,  in 2009-2010. In this experiment, inoculants including:1) control (un-inoculated), 2) Pseudomonas fluorescens strain 169, 3) P. putida strain 108, 4) P. putida strain 11, 5) P. putida strain 159 , 6) P. putida strain 4, and seven Cd concentration levels, i.e. 0, 5, 10, 15, 30, 50 and 100 mg kg-1, were studied. Inoculated and un-inoculated seeds of kale were planted. Plants grew in green house for seven months. Afterwards, kale shoots and roots were harvested separately. In all treatments, Cd concentration was measured using flame Atomic Absorption spectrophotometer. The results were analyzed using SAS software and revealed that the inoculants and Cd concentration levels had significant effects on kale growth and Cd concentration in both shoots and roots (α=1%). By increasing Cd concentration, shoots and roots growth decreased, but inoculants, especially inoculant (5), decreased this effect. Maximum Cd concentrations were 136 and 58 mg kg-1 in roots and shoots, respectively, in 100 mg kg-1 Cd concentration treatment accompanied by inoculant (6). Maximum root dry weight was 1.96 gr for inoculant (4) in 15 mg kg-1 Cd concentration treatment and maximum shoot dry weight was 12.53 gr for inoculant (3) in 30 mg kg-1Cd concentration treatment. According to the noticeable amount of Cd uptake in case of the combination of the plant and the inoculants, kale accompanied by the bacteria can be considered as a reliable option for the remediation of low to moderate Cd-polluted soils (< 50 mg kg-1). In high Cd-polluted soils, however, due to severe decrease in Cd translocation, kale is not a suitable plant for phytoremediation in highly Cd contaminated soils, even if inoculated with bacteria.

Keywords


  1. جلیلی،ف.، خاوازی، ک. واسدی رحمانی، ه.(1390). تأثیر سودوموناس­های فلورسنت با فعالیت آنزیم ACC- دآمیناز بر شاخص­های رشد کلزا در شرایط شور. مجله دانش آب و خاک، جلد 21، شماره 2، صفحات 188-175.
  2. رسولی صدقیانی، م. ح.، رحیمیان، ح . خاوازی، ک. ملکوتی، م. ج. و اسدی رحمانی، ه.(1384). بررسی تراکم جمعیت و شناسایی سودوموناس­های فلورسنت در ریزوسفر گندم مناطق مختلف ایران. مجله علوم خاک و آب، جلد 19، صفحات 224-234.
  3. قهرمانی، ر. (1387). بررسی شدت آلودگی خاک‌های جنوب تهران به کادمیم و میزان جذب آن توسط اسفناج. پایان‌نامه کارشناسی ارشد گروه خاکشناسی دانشکده کشاورزی دانشگاه تربیت مدرس، ایران.
  4. کریمیان، ن‌. (1377). پیامدهای زیاده‌روی در مصرف کودهای فسفاتی. مجله علوم خاک و آب، جلد12، صفحات 1-14.
  5. گلچین، ا. و شفیعی، س. (1385). بررسی تأثیر کارخانجات سرب و روی زنجان بر آلودگی محصولات زراعی و باغی به فلزات سنگین. مجموعه مقالات همایش خاک، محیط زیست و توسعه پایدار، صفحات 21-22. دانشکده مهندسی آب و خاک پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.
  6. لادن، ش. (1388). بررسی زیست­پالایی خاک­های آلوده به آرسنیک توسط پیازچه و کلم زینتی. پایان­نامه دوره ارشد خاکشناسی. دانشکده کشاورزی، دانشگاه تربیت مدرس. تهران، ایران.
  7. ملکوتی، م .ج. (1375). کشاورزی پایدار و افزایش عملکرد با بهینه سازی مصرف کود در ایران. انتشارات معاونت آموزش و تجهیز نیروی انسانی وزارت کشاورزی، ص 279. کرج، ایران.
  8. ملکوتی، م. ج، بغوری،ا.، گلچین، ا .و خانی، م .ر. (1379). کنترل کیفی کودهای فسفاتی ضرورتی انکارناپذیر در راستای نیل به کشاورزی پایدار. مجله علوم خاک و آب،جلد 12،صفحات 6- 11.
  9. ملکوتی ،م. ج.، کشاورز، پ. و کریمیان، ن .(1387). روش جامع تشخیص و توصیه بهینه کود برای کشاورزی پایدار «چاپ هفتم با بازنگری کامل». انتشارات دانشگاه تربیت مدرس، ص. ایران.
  10. ملکوتی ،م. ج. و همایی م. (1383). حاصلخیزی خاک­های مناطق خشک و نیمه خشک (مشکلات و راه‌حل ها). چاپ دوم با بازنگری کامل. انتشارات دانشگاه تربیت مدرس، 482 ص. تهران، ایران
  11. Baharlouei, J., khavazi, K., Pazira, E., and Solhi, M. 2011. Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium and lead uptake by canola and barley. African Journal of Microbiology Research 14:1747-1754.
  12. Brooks, R. R. 1998. Plants that Hyperaccumulate Heavy Metals. CAB. International, Oxon, UK. P. 356.
  13. Dell’Amico, E., Cavalca, L., and Andreoni, V. 2008. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Journal of Soil Biology and Biochemistry 40:74-84.
  14. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117.
  15. Glick, B. R. 2003. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393.
  16. Gupta, P.K. (2000). Soil, plant, water and fertilizer analysis. Agrobios, New Delhi, India. P. 438.
  17. Haque, N., J. R. Peralta-Videa, G. L. Jones, T. E. Gill., and J. L. Gardea-Torresdey. 2008. Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailing in Arizona, USA. Environmental Pollution. 153: 362-368
  18. Jalili, F., Khavazi, K., Pazira, E., Nejati, A., AsadiRahmani, H., RasuliSedghiani, H., and Miransari, M. Isolation and characterization of ACC deaminase- producing fluorescent pseudomonads,to alleviate salinity stress on canola(Brassica napus L.) growth. Journal of Plant Physiology 166: 667—674.
  19. Kirkham, M.B. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32.
  20. Lin, J., and M. Schorr. 1997. A challenge for the phosphate industry: Cadmium removal Phosphorus and Potassium 208:27-31.
  21. Rajkumar, M., Nagendran, R.,Lee., K. J. ,Lee., W H. and Kim. S .Z. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62:741-748.
  22. Saxena, P. K., Krishnaraj, S., Dan, T., Perras, M. R. and Vettaakkorumakankav, N. N. 1999. Phytoremediation of heavy metal contaminated and polluted soils, In: Prasad, M. N. V., Hagemeyer, J. (eds.), Heavy Metal Stress in Plants: from Molecules to Ecosystems. Springer, Berlin, pp. 305-329.
  23. Wu, S. C., Cheung, K. C., Luo, Y. M., and Wong, M. H. 2006. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Journal of Environmental Pollution 140: 124-135