Investigating the Spatial Distribution of Zinc and Its Critical Level for Soybean in Eastern Mazandaran Province

Document Type : Research Paper

Authors

1 M.Sc. Student of Soil Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

2 Professor, of Soil Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

3 Science Staff of Soil and Water Research Institute (SWRI), karaj, Iran

4 Science Staff of Soil and Water Research Institute (SWRI), karaj, Iran;

Abstract

Determining soil parameters variability is a great necessity for precision agriculture. To achieve higher yield with better management, knowledge of physico-chemical properties of soil and nutrients critical levels in the fields is essential. In this regard, geostatistics is one of the methods recently used for investigating the spatial variability of soil properties. In this study, 188 soil samples were taken from the eastern farms of Mazandaran Province and were analyzed for their pH, Organic Carbon (OC), CaCO3, P, K, Fe, Mn, Zn, Cu, and soil texture, in 2009 . The spatial correlation of variable Zn and the best fitted model (Gaussian model) were determined by variogram. The effective range of this value was 40 km. In order to determine the distribution map, interpolation methods, including Kriging, Inverse Distance Weighted (IDW) and Splines were used. Moreover, the precision of these interpolation methods was calculated through mean base error (MBE), mean absolute error (MAE) and Root Mean Square Error (RMSE). A pot experiment with soil samples collected from 29 fields out of the 188 studied fields and containing different Zn concentration was conducted to determine the critical level of soil in response prediction of soybean (Glycine max L.) to Zn fertilization. The experiment was done in a factorial arrangement in randomized complete block design with three replications (174 pots), in the Agricultural Research Center of Mazandaran Province. Soil samples from 29 fields were considered as factor 1, and two Zn fertilizer treatments (0 and 10 mg Zn kg−1 as zinc sulfate) as factor 2. After harvesting and relative yield determination, the critical soil Zn concentration was found to be 1.40 mg Zn kg−1 . This finding was based on pot study for obtaining 95% relative yield, using Cate-Nelson graphical method. Furthermore, using the probability map with Indicator Kriging method revealed that about 80 percent of soils in the studied region had Zn deficiency.

Keywords


  1. احیایی، م. 1376. شرح روش­های تجزیه شیمیایی خاک. جلد 2 نشریه شماره 1024. موسسه تحقیقات خاک و آب. تهران، ایران.
  2. اسدی کنگرشاهی، ع. و م.ج. ملکوتی. 1382. کالیبراسیون روی در شرایط مزرعه­ای و تأثیر آن در عملکرد سویا. مجله علوم خاک و آب، جلد 17 شماره 2. صفحه 124-117.
  3. حسنی­پاک، ع.ا. 1386. زمین آمار (ژئواستاتیستیک). انتشارات دانشگاه تهران. 314 صفحه.
  4. رفیع­الحسینی، م. و ج. محمدی. 1380. تجزیه و تحلیل پراکنش مکانی حاصلخیزی خاک و عملکرد محصول برای مدیریت زراعی دقیق. مجموعه مقالات هفتمین کنگره علوم خاک ایران، دانشگاه شهرکرد، دانشکده کشاورزی. صفحه 180-178.
  5. طهرانی، م.م.، م.ح. داودی و ف. مشیری. 1386. طرح تعیین پراکنش و توصیه عناصر کم­مصرف در اراضی زراعی تحت کشت آبی کشور (فاز اول). موسسه تحقیقات خاک و آب. تهران، ایران.
  6. محمد زمانی، س.، ش.ا. ایوبی و ف. خرمالی. 1386. بررسی تغییرات مکانی خصوصیات خاک و عملکرد گندم در بخشی از اراضی زراعی سرخنکلاته. استان گلستان. مجله علوم و فنون کشاورزی و منابع طبیعی، سال 11 شماره 40 الف. صفحه 91-71.
  7. محمدی، ج. 1377. مطالغه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان) با استفاده از نظریه ژئواستاتیستیک 1- کریجینگ. مجله علوم و فنون کشاورزی و منابع طبیعی، جلد 2، شماره 4. صفحه 63-49.
  8. محمدی، ج. 1385. پدومتری 2 (آمار مکانی)، انتشارات پلک. 453 صفحه. تهران، ایران.
  9. ملکوتی، م.ج.، پ. کشاورز و ن. کریمیان. 1387. روش جامع تشخیص و توصیه بهینه کود برای کشاورزی پایدار. انتشارات مرکز نشر دانشگاه تربیت مدرس، شماره 102. 755 صفحه. تهران، ایران.
  10. ملکوتی، م‌.ج. و ا. سپهر. 1382. تغذیه بهینه دانه­های روغنی. انتشارات خانیران. 452 صفحه. تهران، ایران.
  11. Cakmak, 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil, 302: 1-17.
  12. Chan, M.D., J.W. Hummel and H.H. Brouer. 1994. Spatial analysis of soil fertility for site- specific management. Soil Sci. Soc. Am. J. 58: 1240- 1248.
  13. Franzen, D.W., and T.R. Peck. 1995. Field soil sampling density for variable rate fertilization. J. Prod. Agric. 8: 568-574.
  14. Franzen, D.W., T. Nanna and W.A. Norvell. 2006. A survey of soil attributes in landscape position. Agronomy. 98: 1015-1022.
  15. Lindsay, L.W., and W.A. Norvel. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. 42: 421-428.
  16. Liu, X., J. Xu, M. Zhang and B. Zhou. 2004. Effects of land management change on spatial variability of organic matter and nutrients in paddy field, a case study of Pinhu,China. J. Environ. Manage. 34(5): 691-700
  17. Liu, X., J. Xu, M. Zhang, B. Si and K. Zhao. 2008. Spatial variability of soil available Zn and Cu in paddy rice fields of China. J. Environ. Geolog. 55: 1569-1576
  18. Liu, X.M., J.M. Xu, M.k. Zhang and X.F. Yu. 2004. Application of Geostatistics and GIS technique to characterize spatial variabilities of bioavailable micronutrients in paddy soils. J. Environ. Geolog. 46: 189-194
  19. Malakouti, M.J. 2008. The effect of micronutrients in ensuring efficient use of macronutrients. Turk J. Agric. 32: 215-220.
  20. Robertson, G.P. 2008. Geostatistics for the environmental science (GS+) Gamma design software. Plainwell, MI, pp 256.
  21. Shi, J., J. Xu and P. Huang. 2008. Spatial variability of status of micronutrients in selected soils around Taihu Lake, China. J. Soil Sediments 8: 415-423.
  22. Trangmar, B.B., R.S. Yost and G. Uehara. 1985. Application of Geostatistics to spatial studies of soil properties. J. Adva. Agron. 38: 45-94.
  23. Virgilio, D., A. Monti and G. Venturi. 2007. Spatial variability of switch grass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field Crops Res. 101: 232–239.
  24. Wu, C., and L. Zhang. 2009. Heavy metal concentrations and their possible source in paddy soils of a modern agricultural zone, southeastern China. J. Environ. Earth Sci. 79 (2): 80-91.
  25. Wu, W., D.T. Xiu and H.B. Liu. 2008. Spatial variability of soil heavy metals in the three gorges area, Multivariate and Geostatistical analysis. J. Environ. Moint. Assess. 157 (1): 63-71.
  26. Yong, J., L. Wenju, W. wen and Z. Yuge. 2005. Spatial heterogeneity of DTPA- extractable zinc in cultivated soils induced by city pollution and land use. Sci. in China Ser. C. life Sci. 48: 82-91.
  27. Zhang, X., F. Lin, Y. Jiang, K. Wang and X.L. Feng. 2008. Variability of total and available copper concentrations in relation to land use and soil properties in Yangtz river deltabof China. J. Environ. Moint. Assess. 4: 48-56.