Effects of PGPR Application on Dry Matter Partitioning and Some Growth Characteristics of Maize(Zea mays L.) Hybrids under Greenhouse Conditions

Document Type : Research Paper

Authors

1 Research Assistant Professor, Seed Control and Certification Institute(SPCRI),Karaj

2 Research Assistant Professor, Soil and Water Research Institute(SWRI),Karaj

3 Associate Professor, Seed and Plant Improvement Institute(SPII), Karaj

4 Associate Professor(retired), Seed Control and Certification Institute(SPCRI),Karaj

5 Associate Professor, Tarbiat Modares University(TMU) Agriculture Faculty Agronomy department, Tehran

6 Professor, Tarbiat Modares University(TMU) Agriculture Faculty Soil Science department

Abstract

Application of Plant Growth Promoting Rhizobacteria(PGPR) as biofertilizers play an important role in sustainable crop production management and yield. In this study effect of Azotobacter chroococcum, Azospirillum lipoferum, Azospirillum brasilense and Pseudomonas fluorescens inoculants on late maturity Maize (Zea mays L.) single cross hybrids (SC700,SC 704 and a promising single cross, B73×K18) were utilized. Some morphological traits, dry matter partitioning and some of the root characteristics were recorded under greenhouse conditions. Hybrids seed were treated single inoculation by each bacterium and coinoculation by two and three bacteria inoculums combination and uninoculation treatment as control. Also plant and ear height, stem diameter, plant and above ear leaf number, leaves, stem, tassel and plant dry matter, root surface, volume, length, dry matter and above ground dry matter/root dry matter were determined. Results revealed that except for total number of leaves and above ear leaf number, other studied traits affected by experiment treatments and those interactions of hybrids and the inoculants. Likewise, there were significant interaction revealed that respectively SC704, B73×K18 and SC700 and PGPR. Thus, three bacteria combination have highest growth promoting effect and Azotobacter chroococcum and Pseudomonas fluorescens and seed single inoculation Azotobacter chroococcum and Pseudomonas fluorescens inoculants have the most growth promoting effect respectively.

Keywords


  1. بی‌نام، 1388. آمار نامه کشاورزی، جلد اول: محصولات زراعی وباغی(86-1385). نشریه شماره 09/88 دفتر آمار و فن‌آوری اطلاعات معاونت برنامه‌ریزی و اقتصاد وزارت جهاد کشاورزی، تهران.
  2. روستا،م.ج، صالح راستین ،ن. و مظاهری اسدی ،م.1377.بررسی وفعالیت آزوسپیریلوم در برخی از خاک های ایران. مجله علوم کشاورزی ایران. 298-285 :29.
  3. Atlas, R.M. 2005. Media for environmental microbiology. Ed. Published by Taylor and Francis.USA.
  4. Anonymus, 2008. Agricuture statistics, first volume-horticultural and field crops, 2005-6 crop year. Ministry of Jihad-e-Agriculture, Programing and economics deputy, Statistics and information technology office, no. 85/09.
  5. Banerjee, M.R., L. Yesmin, and J.K.Vessey. 2006. Plant-growth-promoting rhizobacteria as biofertilizers and biopesticides, pp.137-181.in: Handbook of microbial biofertilizers. Ed., Rai, M.K., Food Production Press, S.A.
  6. Barber, A., and J.H.Cushman. 1981. Nitrogen uptake model for agronomic crops., pp. 382-409. in: Modeling waste water renovation-land treatment. Ed., Iskander, I.K., Wiely-Interscience, New York.
  7. Bashan, Y., and J.G. Dubrovsky. 1996. Azospirillum Participation dry matter partitioning in grasses at the whole plant level. Biology and Fertility of Soils, 23: 435-440.
  8. Bohn, W. 1979. Methods of studying root systems. Ecological Studies, 33:188. Springer-Verlag, Berlin.
  9. Burd, G.I., D.G., Dixon, and B.R.Glick. 1998. A plant growth-promoting bacterium that decreases nickel toxity in seedlings. Applied and Environmental Microbiology, 64:3663-3668.
  10. Fallik, E., Y. Okon, E., Epstin, A., Goldman, and M. Fischer. 1989. Identification and quantification of IAA and IBA in Azospirillum braziliens inoculated maize roots.Soil Biol. Bioch. 21: 147-153.
  11. FAO, 2005. 20 selected indicators of food and agriculture development in asia-pacific region (1994-2004). FAO, Rome, Italy.
  12. Fulchieri, M. and L.Frioni. 1994. Azospirillum inoculation on maize (Zea mays ):effect on yield in a field experiment in central Argentina.Soil Biol. Bioch. 26:921-923.
  13. Glick, B.R., C.B., Jacobsen, M.M.K. Schwartze, and Pasternak, J.J. 1994. 1-aminocyclopropane-1-carboxylic acid deaminase mutants of plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation.Canadian J. Microbiol. 40:911-915.
  14. Gonzalez-Lopez,J., M.V., Martinez-Toledo, Riena, and V. Salmeron, 1991. Root exudates of maize and production of auxin, gibberellins,cytokinin,amino acids and vitamins by Azotobacter chroococcum in chemically-defiend mediated dialyzed-soil media. Technol. Environ. Chem. 33: 69-78.
  15. Grichko, V.P., and B.R. Glick. 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria.  Plant Physiol. Bioch. 39:11-17.
  16. Hall, J.A., D., Pierson, S. Ghosh, and B.R. Glick, 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr. J. Plant Sci. 44: 37-42.
  17. Hubbel, D.H., T.M., Tien, M.H., Gaskins, and J., Lee. 1979. Physilogical intractions in the Azospirillum-grass root association, pp.1-6. in:Associative N2 – fixation. Eds., Vose, P.B. and Ruschel, A.P. CRC Press, Boca Raton. FL. 
  18. Jacoud,C., D., Faure, P. Wadoux, and R. Bally. 1999. Initiation of root groth simulation by Azospirillum lipoferum CRT1 during maize seed germination.Can. J. Microbiol. 45:339-342.
  19. Javed, M., M., Arshad, and K., Ali. 1998. Evaluation of rhizobacteria for their growth promoting activity in maize. Pak. J. Soil Sci. 14: 36-42.
  20. Manaffee, W.F. and J.W., Kloepper. 1994. Applications of plant growth promoting rhizobacteria in sustainable agriculture. In: Soil biota management in sustainable farming systems, C.E., Pankburst, B.M.,Doube, V.V.S.R., Gupta, and P.R., Grace, eds. Pp:23-31 CSLRO, pub. East Melbourne, Australia.
  21. Kapulnik, Y., S. Sarig, A. Nur, Y. Okon, and Y., Henis. The effect of Azospirillum inoculation on growth and yield of corn. Isr. J. Bot. 31:247-255.
  22. Molla, A.H., Z.H., Shamsuddin, M.S., Halimi, M., Morziah, and A.B., Puteh. 2001. Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory system. Ann. Microbiol. 33:457-463.
  23. Newman, E.I.1966. Amethod of estimating the total lengh of root in asampel.Journal of Appl. Ecol. 3:139-145.
  24. Nieto, K.F. and W.T.(Jr.), Frankenberger. 1991. Influence of adenine, isopentyl alcohol and Azotobacter chroococcum on the vegetative growth of Zea mays. Plant Soil. 135:213- 221.
  25. Pan,B., Y.M., Bai, S. Leibovitch, and D.L. Smith. 1999.Plant growth promoting rhizobacteria and kinetin as ways to promot corn growth and and yield in a short growing season area.Eropean Journal of Agronomy, 11:179-186.
  26. Patten, C.L. and B.R. Glick. 2002. Role of Pseudomonas putida indolacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 38: 3795-3801.
  27. Phillip, D.A., C.M., Joseph, G.P., Yang, E., Martinez-Romero, J.R. Sanborn, and H. Volpin. 1999. Identification of lumichrome as a Sinorrhizobioum enhancer of alfalfa root respiration and shoot growth. Proc. Nat. Acad. Sci. USA, 96: 12275-12280.
  28. Ribaudo, C.M., A.N., Paccusse, D.P., Rondanini, J.A., Curu, and A.A. Fraschina. 1998. Azospirillum- maize association: effects on dry matter yield and nirte reductuse activity. Agricultura Tropica et Subripica, 31: 61-70.
  29. Rohitashav-Singh, Sood, B.K., V.K. Sharma, and R.Singh, 1993. Response of forage maize (Zea mays ) to Azotobacter inoculation and nitrogen. Ind. J. Agron. 38: 555-558.
  30. Sarig, S., Y., Okon, and A. Blum. 1992. Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulics conductivity of Sorghum bicolor  J. Plant Nut. 15:805-819.
  31. Sharma, A.K. 2003. Biofertilizers for sustainable agriculture. Agrobios, India.
  32. Sturz, A.V. and B.R. Christie. 2003. Beneficial microbial alleloplathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res. 72: 107-123.
  33. Tollenaar, M and W. Migus. 1984. Dry matter accumulation of maize growth hydroponically under controlled-environment and field conditions. J. Plant Sci. 64: 475-485.
  34. Vedderweiss, D., E., Jukervitch, S., Burdman, D. Weiss, and Y. Okon. 1999. Root growth respiration and beta-glocosidase activity in maize (Zea mays) and common bean(Phaseolus vulgaris) inoculated with Azospirillum brasilense.  Symbiosis, 26:367-377.
  35. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizer. Plant Soil. 255: 271- 586.
  36. Vessey, J.K. and T.J. Buss. 2002. Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes. Controlled-environment studies. J. Plant Sci. 82:282-290.
  37. Vivanco, J.M. and H.E. Flores. 2000. Control of root formation by plant growth regulators, pp.1-25. in: Plant growth regulators in agriculture and horticulture. Ed., Basra, A.S., Food Products Press, New York.
  38. Zahir, Z., M., Arshad, and A. Khalid. 1998a. Improving maize yield by inoculation with plant growth promoting rhizobacteria. Pak. J. Soil Sci. 15: 7-11.
  39. Zahir, A.Z., S.A., Abbas, A. Khalid, and M. Arshad. 2000. Substrate dependnd microbially derived plant hormones for improving growth of maize seedlings. Pak. J. Biol. Sci. 3:289-291.
  40. Zahir, A.Z., M. Arshad, and W.F. Frankenberger (Jr.). 2004. Plant growth promoting rhizobacteria: applications and perspectives in Adv. Agron. 81:97-168.