Use of ACC Deaminase –Containing Fluorescent Pseudomonads to Alleviate Effects of Salinity on Canola (Brassica napus L.) Growth in Germination Stage

Document Type : Research Paper

Authors

1 Ph.D Student of Soil Science, Science and Research Branch of Tehran Azad University

2 Assistant Professor, Soil and Water Research Institute( SWRI)

3 Professor of Science and Research Branch of Tehran Azad University

4 Microbiologist, Soil and Water Research Institute

Abstract

Salinity stress in some arid and semi-arid areas is of great importance due to its potential negative impact on crop yield. Under salinity stress the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene in plant, increases. Hence, a research work was planned hypothesizing that ACC deaminase producing Pseudomonas fluorescens and putida may alleviate  the  harmful  effects  of  salinity  on  canola  (Brassica  napus  L.) growth. The experiments were conducted in the Soil and Water Research Institute,  Tehran,  Iran.  Seven  stages  of  experiments  were  conducted  to isolate and characterize ACC Deaminase producing P. fluorescens species and to determine factors, enhancing their growth and, hence, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they are able of utilizing ACC as the sole source of N. Bacterial species differed in their ability to synthesize auxin like compounds, hydrogen cyanide and ACC deaminase. Under salinity stress the rate of germinated seeds, inoculated with the species of ACC Deaminase producing P. fluorescens and putida, was significantly higher. Hence, inoculation of canola seeds with P.fluorescens and putida may alleviate the stress of salinity on canola seed germination and, perhaps, canola growth.

Keywords


  1. Ashraf,M., and McNielly,T.2004.Salinity tolerance in Brassica Crit. Rev.Plant Sci. 23 : 157–174.
  2. Belimov,A.A.,Safronova,V.I.,Sergeyeva,T.A.,Egorova,T.N.,Matveyeva,…V.A.,Tsyganov,V.E., Borisov, A.Y., Tikhonovin, I.A., Kluge, C., Preisfeld,A., Deitz, K.J., and Stepanok, V.V.2001.Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can.J.Microbiol. 47:642-652.
  3. Belimov, A.A., Hontzeas, N., Safronova, V.I., Demechinskaya, S.V., Piluzza, G., Bullita, S., and Glick.B.R.2005. Cadmium-tolerant plant growth promoting bacteria associated with roots of Indian mustard (Brassica juncea .Czem).Soil Biol.Biochem. 37:241-250.
  4. Benizri,E.,Courtade,A.,Picard,C.,and Guckert,A.1998.Role of maize root exudates in the production of auxines by Pseudomonas fluorescens3.1. Soil Biol.Biochem. 30:1481-1484.
  5. Bradford,M.1976.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal.Biochem. 72:248-245.
  6. Burd, G.I., Dixon, D.G., and Glick, B.R. 1998. A plant growth promoting bacterium that decreases nickel toxicity in seedlings.Appl. Environ. Microbiol. 64: 3663–3668.
  7. Burd ,G.I., Dixon ,D.G.,and Glick, B.R. 2000. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. J.Microbiol. 46:237–245.
  8. Dell’Amico,E.,Cavalca,L.,and Andreoni,V.2005.Analysis of rhizobacterial communities in perennial Graminaceae from polluted water medow soil ,and screening of metal-resistant,potentially plant growth-promoting bacteria,FEMS Microbiol. 52:153-162.
  9. Dewan,M.L.and Famuri,J.1964.The Soils of Iran,FAO.Rome.
  10. Donate-Correa,J.,Leon-Barrios,M.,and Perez-Galdona,R.2004.Screening for plant growth promoting rhizobacteria in Chamaecytisus proliferus(tagasaste),a forage tree-shrub legume endemic to Canary Island,Plant Soil 266:261-272.
  11. Dworkin,M.,and Foster,J.1958.Experiments with some microorganisms which utilize ethane and hydrogen.J.Bacteriol.,75:592-601.
  12. Flowers,T.J.,and Yeo,A.R.1995.Breeding for salt tolerance in crop plant:Where next?Aust.J.Plant Physiol.22:875-884.
  13. Frankenberger, W.T., and Arshad, M. 1995. Phytohormones in Soils: Production and Function. Marcel Dekker, Inc., New York.
  14. Ghassemi,F.,Jakeman,A.J., and Nik,H.A.1995.Salinisation of Land Water Resources.Human Causes,Extent,Management and Case Studies.University of New South Walels Press,Sydney,Australia.
  15. Glick, B.R., Jacobson, C.B., Schwarze, M.M.K., and Pasternak,J.J. 1994. 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 do not stimulate canola root elongation.Can. J. Microbiol. 40: 911–915.
  16. Glick,B.R.1995.The enhancement of plant growth promotion by free living bacteria.Can.J.Micribiol. 41:109-117.
  17. Glick, B.R., Karaturovic, D., and Newell, P. 1995. A novel procedure for rapid isolation of plant growth-promoting rhizobacteria.Can. J. Microbiol. 41: 533–536.
  18. Glick,B.R.,Liu,C.,Ghosh,S.,and Dumbroff,E.B.1997.Early development of canola seedlings rhizobacterium Pseudomonas putida GR12-2.Soil Biol.Biochem. 29:1233-1239.
  19. Glick,B.R.,Penrose,D.M.,and Li.J.1998.A model for the lowering of plant ethylene concentration by plant growth promoting bacteria.J.Theor.Biol.,190:63-68.
  20. V.P.,Filby,B.,and Glick,B.R.2000.Increased of transgenic plants expressing the bacterial enzyme ACC Deaminase to aaccumulate Cd,Co,Cu,Ni,Pb, and Zn.J.Biotech. 81:45-53.
  21. Grichko,V.P.,and Glick,B.R.2001.Amelioration of flooding stress by ACC Deaminase-containing plant growth promoting bacteria.Plant Physiol.Biochem. 39:11-17.
  22. Hall,J.A.,Penrose,D.,Ghosh,S.,and Glick,B.R.1996.Root elongation in various agronomic crops by the plant groth promoting rhizobacterium Pseudomonas putida GR12-2.Israel J. Plant Sci.,44:37-42.
  23. Honma, M., and Shimomura, T. 1978.Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric. Biol. Chem. 42: 1825–1831.
  24. Kende,H.1993.Ethylene biosynthesis.Annu.Rev.Plant Physiol.Plant Mol.Biol. 44:283-307.
  25. King, E. O., Ward, M. K., and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44:301-307.
  26. Li,J.,Ovakim,D.H.,Charles,T.C., and Glick,B.R.2000.An ACC Deaminase minus mutant of Entrobacter cloacea UW4 no longer promotes root elongation.Curr. Microbiol. 41:101-105.
  27. Luria, S.E., and Burrous, J.W. 1955. Hybridization between Escherichia coli and Shigella., J. Bacteriol. 74: 461-476.
  28. Lynch, J., and Brown, K.M. 1997. Ethylene and plant responses to nutritional stress. Physiol. Plant 100: 613–619.
  29. Ma,W., Sebestianova, S., Sebestian, J., Burd, G.I., Guinel, F., and Glick, B.R. 2003.Prevalence of 1-aminocyclopropaqne-1-carboxylate in deaminase in Rhizobia spp. Anton. Van Leeuwenhoek 83: 285–291.
  30. Mayak,S.,Tirosh,T.,and Glick,B.R.2004a.Plant Growth promoting bacteria confer resistance in tomato plants salt stress .Plant Physiol.Biochem. 42:565-572.
  31. Mayak,S.,Tirosh,T., and Glick,B.R.2004b. Plant growth promoting bacteria that confer resistance to water stress in tomatoes and peppers.Plant Sci. 166:524-530.
  32. Patten, C. L., and Glick, B. R.1996. Bacterial biosynthesis of indole-3-acetic acid. J. Microbiol. 42:207–220.
  33. Patten,C.L., and Glick, B. R.2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system, Appl. Environ. Microbiol. 48: 3795–3801.
  34. D.M.2000.The role of ACC Deaminase in plant growth promotion Ph.D.Thesis,University of Waterloo.Canada.
  35. Penrose, D. M., Moffat, B. A., and Glick ,B. R.2001. Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC Deaminase-containing bacteria on roots of canola seedlings. J. Microbiol. 47:77–80.
  36. Penrose,D.M.,and Glick,B.R.2003.Methodse for isolating and characterizing ACC Deaminase containing plant growth promoting rhizobacteria,Physiologia Plantarum 118:10-15.
  37. K.and Siosemardeh,A.2004.Ion distribution in wheat cultivars in response to salinity stress.Field Crops Res. 85:125-133.
  38. Saravanakumar,D. and Samiyappan,R.2007.ACC Deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arechis hypogea) plant .J.Appl .Microbiol.,102:1283-1292.
  39. Sessitsch, A., Coenye, T., Sturz, A.V., Vandamme, P., Barka, E.,Wang-Pruski, , Faure, D., Reiter, B., Glick, B.R., and Nowak,J. 2005. Burkholderia phyto.rmins sp. Nov., a novel plant associated bacterium with plant beneficial properties. Int. J. Syst.Evol. Microbiol. 55:1187–1192.
  40. Stougaard, J. 2000. Regulators and regulation of legume root nodule development. Plant Physiol 124 , 531–540.
  41. Wang,C.,Knill,E.,Glick,B.R.,and Defago, G.2000. Effectc of transfering 1-aminocyclopropane-1-carboxylic acid (ACC) Deaminase genes into Pseudomonase fluorescens strain CHAO and its gacA derivative CHA96 on their growth promoting and disease-suppressive capacities.Can.J.Microbiol. 46:898-907.
  42. Whipps, J.M.1990. Carbon-utilization. In:Lynch, J.M.(ed.).The Rhizosphere. Chichester. Wiley Interscience, pp.59-97.
  43. Yang,S.F.,and Hoffman,N.E.1984.Ethylene biosynthesis and its regulation in higher plant.Annu.Rev.Plant Physiol. 35:155-189.
  44. Yeo, A.R. 1999.Predicting the interaction between the effects of salinity and     climate change on crop plants. Sci. Hortic. (Amsterdam)   78: 159–174.