Response of Pistachio Rootstocks (Pistacia Vera cv. Ghazvini) to Different Levels of Zinc and Sodium Chloride

Document Type : Research Paper

Authors

1 MSc. Student, Vali-e-Asr University of Rafsanjan

2 Assistant Professor, Vali-e-Asr University of Rafsanjan

3 Assistant Professor, Vali-e-Asr University of Rafsanjan; E-mail: ahtajabadi@yahoo.com

Abstract

The objective of this study was to evaluate the effect of zinc and salinity levels on some growth parameters and chemical properties of Pistachio (cv. Ghazvini). A factorial greenhouse experiment was carried out as a completely randomized design with three replications. Treatments were 4 levels of Zn (0, 5, 10 and 15 mg kg-1 soil as ZnSO4.2H2O) and 5 levels of salinity (0, 800, 1600, 2400 and 3200 mg NaCl kg-1 soil) and their combinations. Results showed that growth parameters decreased with increasing soil salinity so that the treatment 3200 mg NaCl kg-1 soil resulted in the mean dry weight reduction of the shoot, root, plant’s height and the leaf area to the amounts of 33, 76, 14 and 35 percent respectively in comparison to control. Application of 10 mg zinc kg-1 soil increased an amount of 20, 71, 31 and 41 percent in the mentioned parameters respectively. With increasing salinity, shoot zinc and calcium concentrations significantly decreased by an amount of 48 and 30 percent, respectively, and shoot sodium concentration increased more than 7 times in comparison with the control treatment. As salinity increased, root zinc concentration increased from 17.56 in the control to 21.27 mg kg-1 in the highest salinity level. Shoot Ca concentration increased about 30 % at the third salinity level, but, at the highest salinity level, it was significantly reduced. Zinc application increased shoot zinc and calcium concentrations by, respectively, 60 and 34 % and reduced root Na concentration by 20 %. Also, salinity significantly decreased shoot and root K/Na and Ca/Na ratios, however, application of 10 mg zinc kg-1 soil significantly increased shoot Ca/Na ratio and had no significant effect on K/Na ratio.

Keywords


  1. ابطحی، ع. (1380). واکنش نهال دو رقم پسته نسبت به مقدار و نوع شوری خاک در شرایط گلخانه. علوم و فنون کشاورزی و منابع طبیعی (دانشگاه صنعتی اصفهان). جلد پنچم. شماره اول.
  2. اردلان، م. و غ. ثواقبی. (1381). اثرات مصرف فسفر و روی بر رشد و ترکیب شیمیایی نهال پسته. مجله پژوهش در علوم کشاورزی. جلد دوم، شماره اول.
  3. تاج آبادی پور، ا. 1383. تأثیر کاربرد خاکی پتاسیم بر مقاومت نسبی سه رقم پسته به تنش آبی وشوری. رساله دکتری، بخش خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز. شیراز، ایران.
  4. حکم‌آبادی، ح.، ک. ارزانی.، ی. دهقانی شورکی و ب. پناهی. (1382). پاسخ پایه‌های درختان پسته بادامی زرند، سرخس و قزوینی به زیادی بـُر و سدیم کلراید در آب آبیاری. مجله علوم و فنون کشاورزی و منابع طبیعی. دانشگاه صنعتی اصفهان، سال هفتم، شماره چهارم.
  5. خوشگفتار منش، ا. ح. 1383. تعیین مهمترین عوامل محدود کننده تولید پسته در اراضی شور استان قم. پژوهش‎نامه استان قم، مجموعه مقالات تحقیقات استان قم، انتشارات سازمان مدیریت و برنامه ریزی استان قم، شماره دوم، ص72-58
  6. دفتر آمار و فنآوری اطلاعات. ١٣٨4. آمارنامه کشاورزی.جلد اول محصولات زراعی و باغی. سال زراعی٨3-١٣٨4. معاونت برنامه ریزی و اقتصادی وزارت جهاد کشاورزی. تهران. ایران.
  7. شهریاری، رقیه. 1386. تأثیر فسفر، روی و شوری بر رشد و ترکیب شیمیایی پسته. پایان نامه کارشناسی ارشد، گروه خاکشناسی، دانشکده کشاورزی، دانشگاه ولی عصر رفسنجان.
  8. صالح، ج. ١٣٧٨. تأثیر سطوح شوری و سطوح و منبع روی بر رشد و ترکیب شیمیایی برنج و باقلا. پایان نامه کارشناسی ارشد، بخش خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز.
  9. کشاورز، پ. و م. ج. ملکوتی. 1383. اثر روی و شوری بر رشد، ترکیب شیمیایی و بافت آوندی گندم. مجله علوم خاک و آب. 19: 115-123.
  10. محمدی محمدآبادی، ا. ١٣٧٤. ارزیابی مقاومت پایه‎های متداول پسته به سطوح مختلف شوری آب و رژیم آبیاری. پایان نامه کارشناسی ارشد، بخش آبیاری،دانشکده کشاورزی، دانشگاه شیراز.
  11. مظفری، و. 1384. بررسی نقش پتاسیم، کلسیم و روی در کنترل عارضه سرخشکیدگی پسته. رساله نامه دکتری، بخش خاکشناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس.
  12. نائینی م. ر.، ح. لسانی، ا. ح خوشگفتار. و م. ه. میرزاپور. 1383. اثر تنش شوری ناشی از کلرور سدیم بر غلظت و توزیع عناصر معدنی و قندهای محلول سه رقم تجاری انار. مجله علوم خاک و آب. 18(1): 97-106.
  13. AbdEl-Hady, B. A. 2007. Effect of zinc application on growth and nutrient uptake of barley plant irrigated with saline water. J. Appl. Sci. Res., 3(6):431-436.
  14. Alpaslan, M., A. Inal, A. Gunes, Y. Cikili, and H. Ozcan. 1999. Effect of zinc treatment on the alleviation of sodium and chloride injury tomato (Lycopersicum esculentum Mill, c.v lale) grown under salinity. Tr. J. Botany. 23:1-6.
  15. Ashraf M. and T. McNeilly 1990. Responses of four Brassica species to sodium chloride. Environ. Exp. Bot. 30, 475-487.
  16. Ashraf M. and M. I.  Naqvi 1991. Growth and ion uptake of four Brassica species as affected by Na/Ca ratio in saline sand culture. Pflanzenemiihr. Bodenkd. 155, 101-108.
  17. Bartolini, G., C. Mazuelous, and A.Tranclso.1991. Influence of Na2SO4 and NaCl salts on survival, growth and mineral composition of young olive plants in inert sand culture. Adv. Hort. Sci., 5: 73-76.
  18. Behboudian, M. H., R. R. Walker, and E. Torokfalvy, 1986. Effect of water stress and salinity on photosynthesis of pistachio. Sci. Hort. 29: 251-261.
  19. Ben-Hayem, G., U. Kafkafi, and R. Ganmore-Neumann, 1987. Role of internal potassium in maintaining growth of cultured citrus on increasing NaCl and CaCl2 Plant Physiol. 85: 434-439.
  20. Bouyoucos, J. 1951. A recalibration of hydrometer method for making mechanical analysis of soil. Agron. J. 43:434-438.
  21. Doering, H. W., G. Schulze, and Roscher, 1984. Salinity effects on the micronutrient supply of plants differing in salt resistance proceedings of the 6th Interntl Colloquium for the optimization of plant nutrition. Montpellier, France; 165-175.
  22. EL-Habbal, M. S., A. O. O. Sman, and M. M. Badram. 1995. Effect of some micronutrients fertilizers and transplanting on wheat productivity in newly reclamined saline soil. Annals Agric. Sci. Cairo, 40: 145-152.
  23. Fergusen, L., J. A. Poss, S. R. Grattan, G.M. Grieve, D. Wang. C. Wilson andT. Donovan Chao. 2002. Pistachio rootstocks influence scion growth ion relations under salinity and boron stress. J. Am. Soc. Hort. Sci. 127:194-199.
  24. Gunes, A., A. Inal, and M. Alpasalan, 1996. Effect of salinity on stomatal resistance, proline and mineral composition of pepper. J. Plant Nutr. 19:389-396.
  25. Hansen, E. H. and D. N. Munns, 1988. Effects of CaSO4 and NaCl on mineral content of Leucaena leucocephala. Plant Soil, 107: 101-105.
  26. Hassan, N. A. K., J. V. Drew, D. Knudson, and R. Olsen, 1970. Influence of soil sainity on production of dry matter and uptake and distribution of nutrients in barely and corn: I. Barley Agron. J. 62: 43-45.
  27. Jackson, M. L. 1975. Soil chemical analysis, Advanced Course. Wi. College Agric., Dept. Soils, Madison, WI., U.S.A.
  28. Khoshgoftarmanesh, A. H., B. Jaafaeri, and H. Shriatmadari. 2002. Effect of salinity on Cd and Zn availability. 17th world congress of soil science, Thailand.
  29. Lindsay,W. L., and W. A. Norvell. 1979. Development of a DTPA soil test of Zn, Fe, Mn, Cu. Soil Sci. Soc. Am. J. 42: 421-428.
  30. Mozaffari, V. and M. J. Malakouti. An investigation of some causes of die-back disorder of Pistachio trees and its control through balanced fertilization in Iran. Acta Hort., 726: 247-252.
  31. Olsen, S. R., C. V. Cole, F. S. Watanbe, and L. A. Dean. 1954. Estimation of available phosphorous in soil by extraction with sodium bicarbonate. USDA Circ. 939, S. Govern. Prin. Office, Washington, DC., USA.
  32. Picchioni, G. A., S. Miyamoto, and J. B. Storey. 1990. Salt effects on growth and ion uptake of pistachio rootstock seedlings. J. Am. Sci. Hort. 115: 647-653.
  33. Qadir, M., R. H. Qureshi, and N. Ahmed. 1997. Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Soil Res., 11: 343-352.
  34. Richards, A. 1954. Diagnosis and improvement of saline and alkali soils. U.S.D.A. Handbook No. 60. Washington, DC., USA.
  35. Ruiz, D., V. Martinez., and Cerda. 1997. Citrus response to salinity: growth and nutrient uptake. Tree Physiol. 17: 141-150.
  36. Satti, S. M. E., and M. L. Lopez. 1994. Effect of increasing potassium levels for alleviating sodium chloride stress on the growth and yield of tomato. Commun. Soil Sci. Plant Anal. 25: 2807-2823.
  37. Sepaskhah, A. R. and M. Maftoun, 1982. Growth and chemical composition of pistachio cultivars as influenced by irrigation regimes and salinity levels of irrigation water. II. Chemical composition. J. Hort. Sci. 57: 469-476.
  38. Sepaskhah, A. R. and M. Maftoun, 1988. Relative salt tolerance of pistachio cultivars. J. Hort. Sci. 63: 157-162.
  39. Sepaskhah, A. R., and M.Maftoun. 1981. Growth and chemical composition of pistachio cultivars as influenced by irrigation regimes and salinity levels of irrigation water. I. Growth. J. Hort. Sci. 56: 277-284.
  40. Stevens, R. M., G. Harvey, and G. Davies. 1996. Separating the effects of foliar and root salt uptake on growth and mineral composition of four grapevine cultivars on their own roots and on Ramsey rootstock. J. Am. Soc. Hort. Sci. 121: 569-575.
  41. Talebi, M., Mozaffari , A. Tajabadipour, and S. Enteshari. 2007. The effect of soil zinc application on lipid peroxidation of cell membrane, phenolic compounds and flavonoids in Pistachio (pistacia vera L.) under salinity stress. Biogeochemistry of trace elements: The 9th International Conference on the Biogeochemistry of Trace Elements (ICBOTE) will be held in Beijing.
  42. Tattini, M. (1994). Ionic relations of aeroponically-grown olive genotypes, during salt stress. Plant Soil 161: 251-156.
  43. Verma, T. S. and H. U. 1984. Effect of soil salinity level and zinc application on growth yield and nutrient composition of rice. Plant Soil. 82: 3-14.
  44. Walker, R. R., Torokflavy, A. M. Grieve, and L. D. Prior. 1983. Water relations and ion concentration of leaves on salt stressed citrus plants. Aust. J. Plant Physiol., 10: 265-277.
  45. Walker, R., E. Torokfaluy, and M. H. Behboudian. 1988. Photosynthetic rates and solute partitioning inrelation to growth of salt treated pistachio plants. Aust. J. Plant Physiol. 15: 787-798.