Isolation and Characterization of Iranian Indigenous Azospirilla

Document Type : Research Paper

Authors

1 Ph.D. student, Tehran University

2 Professor,Deprtment of Plant Pathology, Mazandaran University; E-mail: h.rahimian@gmail.com Assistant Professor ,Tehran University

3 Assistant Professor ,Tehran University

4 Assistant Professor (Research) ,Soil and Water Research Institute

Abstract

In order to isolate and characterize the Iranian indigenous Azospirilla, 404 soil and plant samples were collected from 12 provinces. One hundred and fifty isolates capable of forming a veil-like pellicle in a semi solid medium, free of N and with bromethymole blue (NFB), were subjected to primary isolation and characterization. Seventy six isolates were tested and classified into 4 species, based on their growth in a 3% medium of sodium chloride, biotin requirements, consumption and production of acid from glucose and production of polymorphous cells in a NFB medium. The   phenotypic specification of indigenous species were compared with those of A.lipoferum, A.brasilense, A.irakense and A.halopraeferense .The highest number of isolated species belonged to Golestan (25 isolate), Fars, and Khozestan Provinces, respectively. Despite the higher area and number of sampling at Khorasan province, the lowest number of isolates belonged to this province. This may be attributed to the low level of organic matter and unfavorable agricultural condition at this province. Most of the isolated species (80%) were collected from rhizosphere of the gramineous plants, especially wheat. Among the identified species, A.lipoferum was the highest in number, followed by A.brasilense and A.irakense. Only one isolate was morphologically and physiologically similar to A.halopraeferense.

Keywords


  1. Baldani, V. L. D., Olivares, F. & Dobereiner, J. 1995. Selection of Herbaspirillum strains associated with rice seedlings amended with 15N-labelled fertilizer. In International Symposium on Sustainable Agriculture for the Tropics: the Role of Nitrogen Fixation, pp. 202-203. Edited by R. M. Boddey & A. S. de Resende. Rio de Janeiro: EMBRAPDA.
  2. Bartel, B. 1997. Auxin biosynthesis. Annu.Rev.Plant Physiol.Plant Mol.Biol.48:51-66.
  3. Bashan, Y., Holguin, G., de-Bashan, L.E. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can.J. Microbiol. 50: 521–577.
  4. Bashan, Y., and Holguin, G. 1997. Azospirillum-plant relationships: environmental and physiologi­cal advances (1990–1996). J. Microbiol. 43: 103–121.
  5. Bashan, Y., Puente, M.E., Rodriguez-Mendoza, M.N., Toledo, G., Holguin, G. , Ferrera-Cerrato, R., and Pedrin, S.1995. Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl. Environ. Microbiol. 61: 1938-1945.
  6. Bashan, Y., and Holguin, G. 1997. Azospirillum-plant relationships: Environmental and physiologi­cal advances (1990–1996). J. Microbiol. 43: 103–121.
  7. Bottini, R., Fulchieri, M., Pearce, D., Pharis, R.P. 1989. Identification of gibberellins A1, A3 and iso A3 in cultures of Azospirillum lipoferum. Plant Physiol. 90:45–47.
  8. Burdman, S., Kigel, J., Okon, Y. 1996. Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris ). Soil Biol. Biochem. 29:923–929.
  9. Caceres, E. A. R. 1982. Improved medium for isolation of Azospirillum Appl. Environ. Microbiol. 44: 990–991.
  10. Coninck, K. D., Horemans, S., Randombage, S. and Vlassak, K.1998. Occurrence and survival of Azospirillum in temperate regions. Plant Soil 110: 213-218.
  11. Dahm, H., Róz˙ycki, H., Strzelczyk, E, Li, C.Y. 1993. Production of B-group vitamins by Azospirillum grown in media of different pH at different temperatures. Z. Mikrobiol. 148:195–203.
  12. de-Bashan ,L.E., Moreno, M., Hernandez, J.P., and Bashan, Y. 2002. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth promoting bacterium Azospirillum brasilense. Water Res. 36: 2941–2948.
  13. de-Bashan, L.E., Hernández, J.P., Morey, T., and Bashan, Y. 2004. Microalgae growth-promoting bacteria as “helpers” for microalgae: A novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 38: 466–474.
  14. Dobereiner, J. 1992. The genera Azospirillum and In: The Prokaryotes. Eds. A. Balows, H G Truper, M Dworkin, W Harger and K-H Schleifer. pp. 2236–2253. Springer Verlag, New York.
  15. Döbereiner, J., and Day, J.M. 1976. Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen fixing sites. In Proceedings of the First International Symposium on Nitrogen Fixation. Edited by E. Newton and C.J. Nyman. Washington State University Press, Pullman, Wash. pp. 518.538.
  16. Eckert B, Weber O M, Kirchhof G, Halbritter A, Stoffels M and Hartmann A .2001. Azospirillum doebereinerae nov., a new nitrogen fixing bacteria associated with the C4-grass Miscanthus. Int. J. Syst. Evol. Microbiol. 51:17–26.
  17. German, M.A., Burdman, S., Okon, Y., Kigel, J. 2000. Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris ) under different water regimes. Biol. Fertil. Soils 32: 259–264.
  18. Han, S. O. and New, P. B. 1998. Isolation of Azospirillum From natural soils by immunomagentic separation. Soil. Biol. Biochem. 30: 975-981.
  19. Holguin, G., Patten, C.L., and Glick, B.R. 1999. Genetics and molecular biology of Azospirillum. Biol. Fertil. Soils 29: 10–23.
  20. Holt, J. G., Krieg, N R, Sheath , P. H. A., Staley, J .T., Williams, S. T.1994. Bergey‘s Manual of Determinative Bacteriology.William and Wilkins. Baltimore
  21. Khammas, K.M., Ageron, E., Grimont, P.A.D., and Kaiser, P. 1989. Azospirillum irakense nov., a nitrogen fixing bacterium associated with rice roots and rhizosphere soil. Res. Microbiol. 140: 679–693.
  22. Kirchhof, G., Reis, V. M., Baldani, J. I., Eckert, B., Do$ bereiner, J. & Hartmann, A. 1997. Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194, 45±55.
  23. Magalhães, F.M., Baldani, J.I., Souto, S.M., Kuykendall, J.R., Döbereiner, J. 1983. A new acid-tolerant Azospirillum Ann. Acad. Braz. Cienc. 55:417-430.
  24. Mertens, T. and Hess, D.1984. Yield increase in spring wheat (Triticum asetivum ) inoculated with Azospirillum lipoferum under greenhouse and field conditions of a temperate region. Plant Soil 82: 87-99.
  25. Michiels, K., Vanderleyden, J., Van Gool, A. 1989. Azospirillum plant root association: A review. Biol. Fertil. Soils 8:356–368.
  26. Michiels, K.W., Croes, C.L., and Vanderleyden, J. 1991. Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J. Gen. Microbiol. 137: 2241-2246.
  27. Peng, G., Wang, H., Zhang, G., Hou, W., Liu, Y., Wang, E.T., Tan, Z. 2006. Azospirillum melinisnov. a group of diazotrophs isolated from tropical molasses grass. .Int J Syst Evol Microbiol .56: 1263-1271.
  28. Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J .1987. Azospirillum halopraeferense nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth.). Int. J. Syst. Bacteriol. 37:43-51.
  29. Seshadri, S., Muthukumarasamy, R., Lakshminarasimhan, C., and Ignacimuthu, S. 2000. Solubilization of inorganic phosphates by Azospirillum halopraeferans. Curr. Sci. 79: 565–567.
  30. Shah, S., Rao, K.K., Desai, A.1993. Production of catecholate type of siderophores by Azospirillum lipoferum Indian J. Exp. Biol.31:41–44.
  31. Tarrand, J.J., Kreig, N.R., Döbereiner, J. 1978. A taxonomic study of the Spirillum lipoferum group, with a descriptions of a new genus, Azospirillum nov., and two species, Azospirillum lipoferum (Beijerink) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24:967-980.
  32. Vlassak, K., Reynders, L.1978. Associative dinitrogen fixation in temperate regions, p. 71. In Isotopes in biological dinitrogen fixation (Proceedings of the Advisory Group, Vienna, November 1977). International Atomic Energy Agency, Vienna.
  33. Xie, C.H., Yokota, A. 2005. Azospirillum oryzanov. , a nitrogen–fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int. J. Syst. Evol. Microbiol. 55: 1435-1438.