Effect of Cu Application on Yield and Chemical Composition of Rice and Determination of Critical Limit of Copper in Some Calcareous Soils of Fars Province

Document Type : Research Paper

Authors

1 Fomer Graduare Student, Agricutural and Natural Resources Research Center

2 Professor, Department of Soil Science, College of Agriculture, Shiraz University

3 Professor, Department of Agronomy College of Agriculture, Shiraz University

Abstract

There is little, if any information available regarding Cu  availability in calcareous soils of Iran. The availability of this nutrient is generally low in such soils and further reduced by waterlogging. Therefore, it is very important to assess study effect of applied Cu to rice plant. In this study, Nineteen surface soil samples (0 – 30 cm) were collected from different fields in Fars Province with a wide range of physical and chemical properties. DTPA-TEA  used to extract available Cu. Furthermore, the effects of two levels of Cu (0, 2.5 mg kg-1 as CuSO4 . 5 H2O) on the growth and Cu concentration and uptake in vegetative and reproductive stages were studied in a completely randomized design with 3 replications. Thousand  grain weight, harvest index, biological yield and chemical composition of plant were also determined. Mean top dry weight, grain and straw yield, Cu concentration and uptake, thousand  grain weight, harvest index and biological yield were significantly higher in Cu-treated soils than those in untreated soils. Application of Cu decreased concentration of Fe, Mn and Zinc by plant. Furthermore, The critical level of Cu in these soils with DTPA  was calculated 1 μg/g  with Cate-Nelson method and for obtaining 80%, 85% and 90% relative yields with Mitscherlich- Bray method, critical levels of Cu in soils were obtained 1.40,1.65 and 2 μg/g, respectively. Whereas, critical level of Cu in grain was determained 5.93 μg/g.

Keywords


  1. اسدی کنگر شاهی، ص. 1376. برهمکنش مس و ماده آلی در خاک های غرقابی و غیرغرقابی و تأثیر آن در رشد گیاه.پایان نامه کارشناسی ارشد بخش خاکشناسی دانشکده کشاورزی، دانشگاه شیراز
  2. امام، ی. 1382. زراعت غلات. انتشارات دانشگاه شیراز. ص97.
  3. زلفی‌ باوریانی، م. 1377. تأثیر ازت، روی و مس بر رشد و ترکیب‌ شیمیایی برنج و ذرت. پایان‌نامه کارشناسی ارشد بخش خاکشناسی دانشکده کشاورزی دانشگاه شیراز.
  4. علی نژاد، ز. 1381. تأثیر شوری و مس بر رشد و ترکیب شیمیایی دو رقم برنج. پایان‌نامه کارشناسی ارشد بخش خاکشناسی دانشکده کشاورزی دانشگاه شیراز.
  5. کردوانی، پ. 1368. جغرافیای خاک‌ها. انتشارات دانشگاه تهران. ص 357-257
  6. ملکوتی، م. ج.، ن.ع.کریمیان و پ.کشاورز. 1384. روش جامع تشخیص و مصرف بهینه کود های شیمیایی. انتشارات دانشگاه تربیت مدرس. ص 201.
  7. Agrawal, H. P., and M. L. Gupta. 1994. Effect of copper and zinc on copper nutrition to rice. Annals Agric. Res. 15:162-166.
  8. Allison, L. E., and  D.  Moodie. 1965. Carbonate . p.1379 – 1396. In C. A. Black et al. (ed.) Methods of soil analysis. part 2, Am. Soc. Agron., Madison, WI.
  9. Borkert, C. M., F. R. Cox, and M. R. 1998. Zinc and  copper toxicity in peanut, soybean, rice, and corn in soil mixtures. Commun. Soil Sci. Plant Anal. 29:2991-3005.
  10. Bouyoucos, C. J. 1962. Hydrometer method improvement for making particle size analysis of soils. Agron. J . 54 : 464- 465 .
  11. Bowen, J. 1987. Physiology of genotypic differences in zinc and copper uptake in rice and tomato. Plant Soil 99: 115-125.
  12. Cate, R. B., Jr., and L. A. Nelson. 1971. A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Sci. Soc. Am. Proc. 35:658-660.
  13. Chapman, H. D. 1965. Cation-exchange capacity. p. 891-901. In C. A. Black. et al.(ed.) Methods of soil analysis. part 2, Am. Soc. Agron., Madison,WI.
  14. Choudhary, F. M., and J. F. Loneragan. 1972. Zinc absorption by wheat seedling: II. Inhibition by hydrogen ions and by micronutrient cations. Soil Sci. Soc. Am. Proc. 36:327-331.
  15. Choudhary, F. M., M. Sharif, and A. Latif. 1973. Zinc- copper antagonism in the nutrition of rice (Oryza sativa L. ). Plant Soil 38: 573-580.
  16. DeDatta, S. K., ,   N.  Obcemea,  R.  Y. Chen, J. C. Calabio, and R. C. Evangelista. 1987. Effect of water depth on nitrogen use efficiency and nitrogen-15 balance in lowland rice. Agron. J. 79:210-216.
  17. Dwivedi, K. N., and H. Shanker. 1976. Copper and zinc status of Bundelkhand soils. Indian J. Agric. Res. 10:43-47.
  18. Eun, M. Y. 1981. Influence of flooding, soil pH and zinc on growth and chemical composition of rice plant. Diss. Abs. International B. 41:39-71.
  19. 2001. Production Yearbook. Rome, Italy.
  20. Foy, C. D., R. L. Chaney, and M. C. White. 1978. The physiology of metals toxicity in plants. Ann. Rev. Plant Physiol. 29: 511-566.
  21. Gangwar, M. R., M. S. Gangwar, and P. C. Srivastava. 1988. Effect of Zn - Cu interaction on growth parameters and grain yield of rice. Oryza 25:409-412.
  22. Gangwar, M. R., M. S. Gangwar, and P. C. Srivastava. 1989. Effect of Zn and Cu on growth and nutrition of rice. Int. Rice Res. Newslet. 14:30-35.
  23. Haldor, M., and L. N. Mandal. 1982. Cu-Mn interaction and the availability of Zn, Cu, Fe, Mn, and P in waterlogged rice soils. Plant Soil 69: 131-134.
  24. Kausar, M. A., F. M. Chaudhry, A. Rashid, A. Latif, and S. M. Alam. 1976. Micronutrient availability to cereals from calcareous soils. I. Comparative Zn and Cu deficiency and their mutual interaction in rice and wheat. Plant Soil 45:397–410.
  25. Krahmer, R., and W. Podlesak. 1985. Studies on the copper nutrition of cereals. Tagungsbericht 237:129-132.
  26. Larry, R. H., and   E. Schmid. 1967. Uptake and translocation of zinc by intact plants. Plant Soil 27: 249-260.
  27. Lidon, F. C., and S. Henriques. 1992. Effects of increasing concentrations of Cu on metal uptake kinetics and biomass yields. Soil Sci. 154: 44-49.
  28. Lindsay, W. L., and W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42:421–428.
  29. Marschner, H. 1995. Mineral nutrition of higher plants. 2 nd ed., Academic Press. NY., p.890.
  30. Nambiar, E. K. S. 1976. Genetic differences in the copper nutrition of cereals. I. Differential responses of genotypes to copper. Aust. J. Agric. Res. 27:453-463.
  31. Patra, D.,   Haldar, and  L.  N.  Mandal. 1982. Effect of P, Cu and Zn application on the growth and Zn, Cu, Fe, Mn and P nutrition of rice in waterlogged soil. Indian Agric. 26:229-235.
  32. Peech, M. 1965. Hydrogen ion activity. p. 922-923. In C. A. Black et al. (ed.) Methods of soil analysis . part2, Am. Soc. Agron., Madison, WI.
  33. Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Adv. Agron. 24: 29-96.
  34. Reith, J. W. S. 1968. Copper deficiency in crops in north- east Scotland. J. Agric. Sci., Camb. 70: 39-45.
  35. Schmid, W. E., H. P. Haag, and E. Epstein. 1965. Absorption of zinc by excised roots. Physiol. Plant. 18: 860-869.
  36. Singh, A. K., and P. Nongkynrih. 2000. Critical limit of copper for predicting response of rice to copper application on wetland rice soils of Meghalaya. J. Indian Soc. Soil Sci. 48:406-408.
  37. Tisdale, S. ,  W.  L.  Nelson,  and  J.  D.  Beaton. 1985. Soil fertility and fertilizer. 4 th ed., Collier McMillan. NY. P. 62-66, 386-387.
  38. Walkley, A., and    A.  Black. 1934. An examination of the Deglijareff method for determining soil organic matter as a proposed modification of the chromic acid titration method Soil  Sci . 37:29-38.