Evaluation of AM Fungi Effect on Yield and Yield Component of Two Wheat Cultivars at Different Levels of Salinity

Document Type : Research Paper

Authors

1 Former Graduate Student, Soil Sciences Department, Tarbiat Modarras university, Tehran

2 Assistant Professor, Soil and Water Research Center, Tehran Iran

3 Professor, Tarbiat Modarres University

4 Researcher, Seed and Plant Improvement Institute, Karaj, Iran

Abstract

More than 4 million hectars of arable land of the country is devoted to saline and alkaline soils. Ion toxicity and reduction of availability of water and nutrient elements in crop plants decrease grain yield and yield component. Major parts of the arable saline lands are devoted to strategic crop plants such as wheat and barely. Reports indicate that application of chemical fertilizer for increasing grain yield is not economically beneficial to farmers. Therefore, new approaches are needed to increase grain yield in this type of soils. One of the approaches in increasing grain yield is to provide a symbiosis relationship between various species of Vesicular Arbuscular Mycorrhiza Fungi and different wheat cultivars. The objective of this study was to clarify the role of mycorrhizal symbiosis on increasing grain yield and yield component of wheat cultivars grown under saline stress in controlled condition. A Completely Randomized experimental design was set up in three level of salinity treatments (4, 8, 12 dS/m) from both NaCl and CaCl2 sources, 5 levels of inoculations with arbuscular mycorrhizal fungal species [Glomus mosseae, G. intraradices, G. etunicatun, mixture of three mentioned species and a control (non inoculated)] on two salt tolerant and semi-tolerant wheat cultivars (promising line 9 [Bank “S”/vee “S”] and Chamran) in four replication under greenhouse condition at Karaj in 2006. Results showed that new salt tolerant wheat line 9 had higher grain yield compared with semi-tolerent Chamran wheat cultivar. Yield component such as kernel weight, kernel number per spike, kernel weight of spike and morphological characters such as spike length, dry weight of shoot and root were increased in Line 9 compared to chamran cultivar. Inoculation by  mycorrhizal fungi species in both wheat cultivars, particulary under high levels of salinity stress, increased grain yield significantly (P  0.05). Compared to control treatment with no inoculation the highest grain yield and yield component obtained from the fungal mixture inoculation treatment

Keywords


  1. احیائی، م.، بهبهانی زاده، ع 1372. شرح روشهای تجزیه شیمیایی خاک، جلد اول، نشریه شماره 893، مؤسسه تحقیقات خاک و آب، تهران.
  2. بنایی، م. ح. مؤمنی، ع.، بای‌بوردی، م. و ملکوتی، م. ج. 1383. خاکهای ایران، تحولات نوین در شناسایی، مدیریت و بهره‌برداری. وزارت جهاد کشاورزی، سازمان تحقیقات و آموزش کشاورزی، مؤسسه تحقیقات خاک و آب، انتشارات سنا. تهران، ایران.
  3. حیدری شریف‌آباد، ح. 1382. روشهای مقابله با خشکی و خشکسالی، وزارت جهاد کشاورزی، معاونت زراعت، کمیته ملی مدیریت خشکی و خشکسالی کشاورزی.
  4. رضایی، ح 1381. بررسی فیزیولوژی تحمل ارقام کلزا به محیطهای شور. پایان نامه دکتری دانشکده کشاورزی تربیت مدرس.
  5. علی اصغرزاده، ن 1379. بررسی پراکنش و تراکم جمعیت قارچهای میکوریز آربسکولار در خاکهای شور دشت تبریز و تعیین اثرات تلقیح آن ها در بهبود تحمل پیاز و جو به تنش شوری، پایان نامه دکتری خاکشناسی، دانشکده کشاورزی، دانشگاه تهران، 197 ص. کرج، ایران.
  6. کشاورز، پ. 1383. اثر شوری بر قابلیت جذب روی (Zn) توسط گندم در خاکهای آهکی، پایان‌نامه دکتری خاکشناسی دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.
  7. ملکوتی، م. ج. و نفیسی، م. 1373. مصرف کود در اراضی زراعی فاریاب و دیم، انتشارات دانشگاه تربیت مدرس.
  8. همایی، م. 1381. واکنش گیاهان به شوری، چاپ اول، انتشارات کمیته ملی آبیاری و زهکشی ایران، شماره 58.
  9. Ali Asgharzadeh, N., Saleh Rastin, N., Towfighi, H. and Alizadeh, A. 2002. Effect of mycorrhization on yield and nutrient uptake by barley in saline condition. In: Transactions of the 17th Word Congress of Soil Science held at Queen Sirikit Nation Convention Center, 14-21 Augest 2002, Bangkok, Thailand.
  10. Al-Karaki, G. N. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10: 51-54.
  11. Al-Karaki, G. N. 2001. Salt stress response of salt-sensitive and tolerant durum wheat cultivars inoculated with mycorrhizal fungi.  Acta Agronomic Hungarica, 49:  25-34.
  12. Al-Karaki, G. N. 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subseqent performance under irrigation with saline water.  Scientia Horticalturae, 109:  1-7.
  13. Al-Karaki, G. N. and Clark, R. B. 1998. Growth, mineral acquisition and water use by mycorrhizal wheat growth under water stress.  Journal of Plant Nutrition, 21: 263-267.
  14. Allen, M. F. and Boosalis, M. G. 1995. Effects of two species of VA mycrorrhizal fungi on drought tolerance of winter wheat. New Phytol., 93: 67-76.
  15. Auge, R. M. 2001. Water relations, drought and vesicular-arbuscular mycorrhial symbiosis. Mycrorrhiza, 11: 3-42.
  16. Cantrell, C. and Linderman, R. G. 2001. Preinoculation of lettuce and onion with VM mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil, 233: 269-281.
  17. Cho, K., Toler, H., Lee, J., Ownley, B., Stutz, J. C., Moore, J. L. and Auge, R. M. 2005. Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stress.  Journal of Plant Physiology, Article in press.
  18. Feng, G., Zhang, F. S., Tian, C. Y. and Tang, C. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12: 185-190.
  19. Giovannetti, M. and Mosse, B. 1980. Estimating the percentage of root length colonized (Grindline-intersect method). New Phytol., 84: 489-500.
  20. Giri, B., Kapoor, R. and Mukerji, G. 2003. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils,  38:  170-175.
  21. Giri, B., Kapoor, R. and Mukerji, G. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza,  14:  307-312.
  22. Gunes, A., Inal, A. and Alpaslam, M. 1996. Effect of salinity on stomatal resistance, proline and mineral composition of paper. Journal of Plant Nutrition, 19:  369-389.
  23. Hamblin, A. P. 1985. The influence of soil structure on water movement crop root growth, and water uptake. Adv. Agron., 38: 95-158.
  24. Harrier, L. A. 2001. The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. Journal of Experimental Botany, 52: 469-478.
  25. Ho, and Trappe, J. M. 1975. Nitrate reducing capacity of two vesicular-arbuscular mycorrhizal fungi. Mycologia, 431-438.
  26. Jastrow, J. D. and Miller, R. M. 1991. Methods for assessing the effects of biota on soil structure. Ecosyst. Environ., 34 : 279-303.
  27. Jentschke, G., Brandes, B., Kuhn, A. J., Schoder, W. H., Becker, J. S. and Godlbdd, D. L. 2000. The mycorrhizal fungus Paxillus involutus transport magnesium to Norway Spruce Evidence from stable isotope labeling. Plant Soil, 220: 243-246.
  28. Jindal, V., Atwal, A., Sekhon, B. S. and Singh, R. 1993. Effect of vesicular arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity.  Plant Physiol. Biochem., 31:  475-481.
  29. Kaldof, M., Schemelzer, E. and Bothe, H. 1998. Expression of maize and fanged nitrate reductase in arbuscular mycorrhiza. Mol. Plant - Microbe Interact., 11: 139-448.
  30. Kaldof, M., Zimmer, W. and Bothe, H. 1994. Genetic evidence for the occurrence of assimilatory nitrate reductase in arbuscular mycorrhizal fungi. Mycorrhiza, 5: 23-28.
  31. Marsh, B, a'B. 1971. Gridline- intersect method for Root length.  Appl. Ecol., 8:  265-267.
  32. Mass, E. V. and Grieve C. M. 1990. Spike and leaf development in salt-stressed wheat. Crop Sci., 30:  1309-1313.
  33. McMillen,B. G., Juniper, S. and Abbott, L. K. 1998. Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungi in soil containing sodium chloride limits the spread of infection from spores.  Soil Biol. Biochem., 30:  1639-1649.
  34. Oades, J. M., Water, A. G. 1991. Aggregate hierarchy in soils. J. Soil Res., 29: 815-823.
  35. Pessarakli, M. 1999. Soil salinity and sodicty as particular plant / crop stress factors.  In:  Handbook of Plant and Crop    Pessarakli, M.,ed. pp. 1-5. Marcel Dakker New York.
  36. Ruiz-Lozano, J. M. and Azcon, R. 1996. Mycorrhizal colonization and drought stress exposition as factors affecting nitrate reductase activity in lettuce plants, Agric Ecosyst Environ., 60: 175-181.
  37. Scheloske, S., Maetz, M., Schneider, T., Hildebrandt, U., Bothe, H. and Povh, B. 2004. Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by poroton induced X-ray emission.  Protoplasma, 223:  183-189.
  38. Smith, S. E. and Read, D. J. 1997. Mycorrhizal Symbiosis. Academic Press. San Diego, Cali.
  39. Tobar, R. M., Azcon, R. and Barea, J. M. 1994. Improved nitrogen uptake and transport from 15N-labeld nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol., 126: 119-122.
  40. Tsang, A. and Manu, M. A. 1999. Mycorrhizal fungi increase salt tolerance of Strophyles helvola  in coastal foredunes.   Plant Ecology, 144: 159-166.
  41. Yano-Melo, A. M., Saggin, O. J., Jr. and Maia, L.C. 2003. Tolerance of mycorrhizal banana (Musa cv. Pacovan) plantles to saline stress. Agriculture, Ecosystem and Environment, 95: 343-348.