Effect of Na Cl-Salinity on Growth, Photosynthesis and K/Na Ratio in Three Olive Cultivars

Document Type : Research Paper

Authors

1 Associate Professor, Faculty of Agriculture, University of Tabriz

2 Professor, Faculty of Agriculture, University of Tarbiat Modrres

3 Researcher, Agricultural and Natural Resources Reserch of Esat Azarbijan

Abstract

Salinity of soil and water is a serious problem affecting the growth and performance of plants in Iran. A pot experiment was conducted to asses the physiological effects of NaCl salinity on the olive trees growth. Four rates of NaCl concentrations (0, 50, 100, 150 mM) factorially combined with three olive trees cultivars. The experiment was based on completely randomized design with four replications. The plants were cut and vegetative characteristics such as leaf area, fresh and dry weight of leaves and the concentration of Na and K were measured at the end of the experiment. The rates of both photosynthesis (Pn) and transpiration were recorded during the growth of the plants using a photosynthesismeter (IRGA). The results showed that the growth of the plants in terms of leaf area, height and leaf fresh weight reduced as the salinity increased. However, the growth reduction of Manzanilla and Zard cultivars was more pronounced as the salinity increased. The rate of Pn tended to be lower in the high salinity treatments in all cultivars. The highest (1.8 µmol.m-2s-1) and lowest (1.0 µmol.m-2s-1) photosynthesis rate at high salinity were observed in Mission and Zard, respectively. Symptoms of toxicity as marginal necrosis on the leaves caused by salinity were initiated two months after applying salinity in Manzanilla and Zard cultivars. The concentration of Na in the leaves at high salinity (150mM) was 78% (Mission) and 83% (Zard and Manzanilla) compared with their controls. A positive relationship was found between K/Na and Pn rate, suggesting that the reduction in K concentration either by low uptake or the reduction of K/Na ratio has a remarkable effect on Pn rate. Reduction in growth of olive trees in saline conditions was a result of the reduction in leaf area, K/Na and Pn rate. It can be concluded that Mission can tolerate up to EC value of 15 dS.m-1 and 150 mM NaCl in seedling stage

Keywords


  1. خوشگفتارمنش، ا. و ح. سیادت. 1381. تغذیه معدنی سبزیجات و محصولات باغی در شرایط شور. معاونت امور باغبانی وزارت جهاد کشاورزی، انتشارات نشر آموزش کشاورزی، 86 صفحه. کرج، ایران.
  2. درویشیان م. 1376. زیتون (ترجمه). نشر آموزش کشاورزی. کرج، ایران.
  3. ملکوتی م. ج، کشاورز پ، سعادت س. و خلدبرین ب. 1381. تغذیه گیاهاه در شرایط شور. معاونت باغبانی. وزارت کشاورزی، تهران، ایران.
  4. مظفری، و. و م. ج. ملکوتی. 1382. بررسی نقش پتاسیم، کلسیم و روی در کنترل عارضه خشکیدگی پسته. نشریه فنی شماره 306. نشر آموزش کشاورزی، معاونت تحقیقات و آموزش. وزارت جهاد کشاورزی، کرج، ایران.
  5. میرمنصوری ا. 1372. آشنائی با زیتون. سازمان تحقیقات و آموزش و ترویج کشاورزی. وزارت کشاورزی، تهران، ایران.
  6. همایی، م. 1381. واکنش گیاهان به شوری. کمیته ملی آبیاری و زهشکی ایران. شماره انتشار 58، تهران، ایران.
  7. Ball, M. C. and G. D. Farquhar. 1984. Photosynthetic and stomatal responses of two mangrove species (Avicennia marina and Aegiceras corniculatum), to long term salinity and humidity conditions. Plant Physiol., 74: 1–6.
  8. Behboudian, M. H., E. Torokfalvy, and R. R. Walker. 1986. Effects of salinity on ionic content, water relations and gas exchange parameters in some citrus scion rootstock combinations. Scientia Hort., 28: 105-116.
  9. Bong, G. and F. Loreto. 1989. Gas exchange properties of salt-stressed olive (Olea europaea L.) leaves. Plant Physiol. 90: 1408–1416
  10. Botrini, L., M. Lipucci di Paola, and A. Graifenbeg. 2000. Potassium affects sodium content in tomato plants grown in hydroponic cultivation under saline sodic stress. HortScience, 35: 1220-1222.
  11. Chartzoulakis, K., M Loupassaki, M. Bertaki, and Androulakis. 2002. Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. HortScience, 96: 235-247.
  12. Downton, W. J. S. 1977. Photosynthesis in salt stressed grapevines. Aust. J. Plant Physiol., 4: 183-192.
  13. Devitt, D., Jarrell, W. M., and Steven, K. L. 1981. Sodium-potassium ratios in soil solution and plant response under saline conditions. Soil Science. Society American Journal. 34: 80-86.
  14. Jackson, W. A. and R. J. Volk. 1997. Role of potassium in photosynthesis and respiration. pp 109-188. In: R.D. Munson (ed.). Potassium in Agriculture. American Society of Agronomy, Madison, WI.
  15. Loreto, F., M. Centritto, and K. Chartzoulakis. 2002. Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environ., 26, 495-601.
  16. Marschner, H. 1995. Mineral nutrition of higher plants. London. Academic Press.
  17. Munns R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ., 16: 15–24.
  18. Munns R. and A. Termaat. 1986. Whole plant responses to salinity. Aust. J. Plant Physiol., 13: 143–160.
  19. Szblocs, 1994. Prospects of soil salinity for 21th century. Agrokemia Es. Talajtan Tom., 43: 5-24.
  20. Tabatabaei, S. J., P. Gregory, P. Hadly, and L. Ho. 2004. Use of unequal salinity in the root zone to improve yield and quality in hydroponically grown tomato. Acta Hort., 648: 47-54.