Predicting the Soil Consistency (Atterberg) Limits by Using Some Easily Available Soil Properties

Document Type : Research Paper

Authors

1 Expert, Soil and Water Research Institute;

2 Assistant Professor, Soil and Water Research Institute

3 Assistant Professor, Department of Soil Science,Guilan University

4 Expert, Soil and Water Research Institute

Abstract

The (Atterberg) consistency limits of soil are important for soil mechanical properties the are used primarily in classifying cohesive soil materials for engineering purposes and are strongly correlated to other fundamental soil properties. They are also used for estimation of there useful indices for soil engineering interpretations, such as shear strength and bearing capacity, compressibility, swelling potential and specific surface. Whereas the direct measurement of there  are time- consuming and require enough experiment, it is required that predict them indirectly by using some soil easily available properties with reasonable accuracy. The objective of this study was to predict soil liquid limit (LL), plastic limit (PL) and plasticity index (PI) indirectly from some easily available soil physical and chemical properties. In this research 37 loamy soil samples were randomly collected from karaj area 30 samples were used for model development and 7 samples were used for validation. Particle size distribution, bulk density, and cation exchange capacity were determined by the hydrometry, cold, and with ammonium acetate methods, respectively. Liquid limit were obtained using casagrande. The optimum combination of independent variables for estimation of LL, PL and PI were selected by using stepwise regression method. The regression equations were obtained using multiple linear regression method. The results indicated that there was a significant correlation between measured and predicted values. The correlation were significant at 0.1% for presented functions of liquid limit (R2 adj = 0.77), plastic limit (R2 adj = 0.72) and plasticity index (R2 adj = 0.62). Statistical analysis for the evaluation of PTFs indicated that Geometric mean error ratio (GMER) values were close to 1 (0.99-1.06) and Geometric standard deviation of the error ratio (GSDER) values were small (1.03 – 1.32). The results indicated that presented functions were valid.

Keywords


  1. آریا، پ. و میرخانی، ر.، 1384، روش‌های تجزیه خصوصیات فیزیکی خاک. مؤسسه تحقیقات خاک و آب، نشریه فنی شماره 479.
  2. میرخانی، ر.، شعبانپور، م. و سعادت، س.، 1384، استفاده از فراوانی نسبی ذرات و درصد کربن آلی برای برآورد ظرفیت تبادل کاتیونی خاکهای استان لرستان، مجله علوم خاک و آب، جلد 19، شماره 2، صفحه242-235.
  3. محمودی، ش. و حکیمیان، م.، 1374، مبانی خاکشناسی، چاپ اول، انتشارات دانشگاه تهران، تهران، ایران.
  4. علی احیایی، م. و بهبهانی‌زاده، ع. ا.، 1372، شرح و روش‌های تجزیه‌ شیمیایی خاک، مؤسسه تحقیقات خاک و آب، نشریه فنی شماره 839.
  5. فرخیان فیروزی، 1. و همایی، م.، 1382، اشتقاق توابع انتقالی خاکهای گچی به منظور برآورد نقطه‌ای منحنی رطوبتی، مجموعه مقالات هشتمین کنگره علوم خاک ایران، رشت، صفحه 1071-1069 .
  6. فرخیان فیروزی، 1. و همایی، م.، 1382، برآورد پارامتریک ویژگی‌های هیدرولیکی خاک‌های گچی با استفاده از توابع انتقالی خاک، مجموعه مقالات هشتمین کنگره علوم خاک ایران، رشت، صفحه 967-965 .
  7. حسینی عزآبادی. ج.، 1381، تخمین منحنی رطوبتی خاک با استفاده از مدل تک پارامتری، پایان نامه کارشناسی ارشد دانشگاه تربیت مدرس، تهران، ایران.
  8. Bell, M. A. and H. Van Keulen. 1995. Soil pedotransfer functions for four Mexican soils. Soil Sci. Soc. Am. J. 59: 865-871.
  9. Bouma, J. and H. A. J. Van Lanen. 1987. Transfer functions and threshold values from soil characteristics to land qualities. In: Beek, K., P. A. Barrough and D. D Mc Cormack (Ed.)., Proc. Workshop by ISSS/SSSA on Quantified Land Evaluation Procedures, ITC publication No. 6, Enschede, the Netherlands, pp: 106-111.
  10. Carter, M. R. 1993. Soil sampling and methods of analysis. pp: 823.
  11. Krogh, L., H. Breuning- Madsen. and M. H. Greve. 2000. Cation exchange capacity pedotransfer function for Danish soils. Soil and Plant Sci. 50: 1-12.
  12. MacDonald, K.B.1998. Development of pedotransfer functions for southern Ontario report from Greenhouse and Processing Crops Research Center Harrow, Ontario. 01686-8-0436. pp:1-23
  13. Mbagwu, J.S.C. and O.G. Abeh. 1998.Prediction of engineering properties of tropical soils using intrinsic pedological parameters. Soil Science, Baltimore,V:163, N:2, P: 93-102.
  14. Ryan, B. F. and B. L. Joiner. 1994. Minitab Handbook. Durbuy Press. 483 pp.
  15. Vereeeken, H., J. Meas., J. Fegen and P. Davius. 1989. Estimating the soil moisture retention characteristics form texture, bulk density and carbon content. Soil Sci: Soc. Am. J. 148 (6): 389-403.
  16. Wagner, B., V. R. Tarnaeaski,V. Hennings, V. Muller, G. Wessolek and R. Plagge. 2001. Evaluation of pedotransfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoferma. 102: 275-297.