The Effect of Arbuscular Mycorrhizal Symbiosis in Growth, Yield and Nutrient Uptake in Wheat under Drought Stress

Document Type : Research Paper

Authors

1 Assistant Professor, Soil and Water Reserch Institute

2 Professor, Tarbiat Modarres University

3 Associate Professor, Tehran University Expert, Soil and Water Research Institute

Abstract

In a considerable proportion of the worlds’ arid and semiarid regions, as with the conditions that prevail in our country, wheat is produced under rainfed cultivation. In such area the plant depends on the natural precipitations as the source of its moisture supply and may suffer water stress and drought at any time. During drought periods, it is mostly the interuption in the absorption of nutrient particularly the less mobile elements such as phosphours, iron, zinc and copper that decrease the wheat yields.  Arbuscular mycorrhizal fungi (AMF) are the obligate symbiotic organisms that exist in the root systems of more than 80 percent of plant families. These fungi are of great values to the initial establishment and improve plant growth by providing water and nutrients especially under the conditions in which the hosts are stressed by environmental limitations. A greenhouse experiment was conducted in a factorial test arranged as a complete randomized design with four fungal treatments namely, Glomus mosseae from Canada, G mosseae and G. etunicatum obtained from Tabriz University and the non-fungal treatment (control). Three soil moisture levels of 22, 14 and 8% (w.v) with two soil types (sterilized and non-sterilized) and six replicates were used in the experiment to asses the mycorrhiza interactive effects on wheat nutrient uptake under drought conditions. The results indicated that the rate of nutrient uptake was significantly increased by increasing soil moisture contents (P<0.01). The fungal treatments on the sterilized soil resulted in a significant increase in the rate of phosphorus and zinc uptake (P<0.01) and increase of dry matter, yield and uptake of copper (P<0.05). Dry matter, yield and absorption of phosphorus and zinc also was increased in the non-sterilized soil (P<0.05), but the increase in the rate of copper absorption was not statistically significant. Similarly, the rates of nitrogen, potassium, iron and manganese uptake did not significantly increase in either the sterilized or nonsterilized soils. 

Keywords


  1. امامی، ع. 1375. روشهای تجزیه گیاه، جلد اول، نشریه شماره 982، موسسه تحقیقات خاک و آب، تهران.
  2. رجالی، ف.، ع. علیزاده، ن. صالح راستین،‌م. ج. ملکوتی. 1382. بررسی پتانسیل همزیستی قارچهای میکوریزای اربسکولار و خصوصیات فیزیکی و شیمیایی خاک در برخی دیمزارهای گندم استان آذربایجان شرقی. مجله علوم خاک و آب، جلد 17 شماره 1، صفحه 80 تا 89. تهران، ایران.
  3. شیرانی، ا.، ع. علیزاده، ا. هاشمی دزفولی. 1379. بررسی اثر قارچ میکوریز وسیکولار ـ اربسکولار، فسفر و تنش خشکی بر کارایی جذب عناصر غذایی در گیاه گندم. نشریه نهال و بذر جلد 16 شماره 3. ص. 327 تا 349. تهران، ایران.
  4. شیرانی، ا.، ع. علیزاده، ا. هاشمی دزفولی. 1379. بررسی اثر قارچ میکوریز وسیکولار ـ اربسکولار، باکتری Bradyrhizobium japonicum و فسفر بر کارایی جذب برخی از عناصر غذایی در سویا. نشریه نهال و بذر. جلد 16. شماره 2. ص. 172 تا 191. تهران، ایران.
  5. علی احیائی، م.، ع. بهبهانی‌زاده. 1372. شرح روشهای تجزیه شیمیایی خاک، جلد اول، نشریه شماره 893، موسسه تحقیقات خاک و آب، تهران، ایران.
  6. Abbott, L. K. and Robson, A. D. 1991. Field management of mycorrhizal fungi In: The Rhizosphere and Plant Growth. D. L. Keister and P. B. Cregan (eds.). Kluwer Academic Publisher Dordecht, The Netherlands. PP. 355-362.
  7. Al-Karaki, G. N., and Al-Raddad, A. 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza. 7: 83-88.
  8. Al-Karaki, G. N., Al-Raddad, A., and Clark, R. B. 1998. Water stress and mycorrhizal isolates effects on growth and nutrient acquisition of wheat. Journal of Plant Nutrition. 21: 891-902.
  9. Al-Karaki, G. N., and Clark, R. B. 1999. Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress. Journal of Plant Nutrition. 21:263-276.
  10. Al-Karaki, G. N., and Clark, R. B., 1999. Mycorrhizal influence on protein and lipid of durum wheat grown at different soil phosphorus level. Mycorrhiza. 9:97-101.
  11. Ames, R. N., Reid, C. P. P., Porter, L. K., and Cambardella, C. 1983. Hyphal uptake and transport of nitrogen from two 15N labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytologist. 95: 381-396.
  12. Bethlenfalvay, G. J., Franson, R. L., Brown, M. S. and Mibara, K. L. 1989. The Glycne-Glomus-Bradyrhizobium symbiosis, IX: Nutritional, morphological and physiological responses of nodulated soybean to geopgraphic isolates of the mycorrhizal fungus, Glomus mosseae. Physilogia Plantarum. 76: 226-232.
  13. Brown, M. S., and Bethlenfalvay, G. H. 1987. The Glycine-Glomus-Bradyrhizobium Symbiosis. VI. Photosynthesis in nodulated mycorrhizal or N and P-fertilized soybean plants. Plant Physoil. 58: 120-123.
  14. Bryla, D. R. and Duniway, J. M. 1998. The influence of the mycorrhiza Glomus etunicatum on drought acclimation in safflower and wheat. Plant and Soil. 104:87-96.
  15. Caris, C., Hordt, W., Hawkins,. H. J., Romhel, V., and Eckhard, G., 1998. Studies of iron transport by arbuscular mycrorrhiza hyphae from soil to peanut and sorghum plants. Mycorrhiza, 8: 35-39.
  16. Clark, R. B. 1997. Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant and Soil. 192: 15-22.
  17. Clark, R. B., and Zeto, S. K. 1996. Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biology and Biochemistry. 28: 1405-1503.
  18. Davies, F. T., Potter, J. R. and Linderman, R. G. 1992. Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration response in gas exchange and water relations. Physilogica Plantarum. 87: 45-53.
  19. Dietz, K. J. and Foyer, C. 1986. The relationship between phosphate and photosynthesis in leaves reversibility of the effects of phosphate deficiency on photosynthesis. Planta. 167: 376-381.
  20. Ellis, J. R., Larsen, H. J. and Boosalis, M. G. 1985. Drought resistance of wheat plants inoculated with vesicular-arbuscular mycorrhizae. Plant and Soil. 86: 369-378.
  21. Gemma, J. N., Koske, R. E., Roberts, E. M., Jackson, N., and Antonis, K. 1997. Mycorrhizal fungi improve drought resistance in creeping bentgrass. Journal of Turfgrass Science. 73: 15-29.
  22. Goh, T. B., Banerjee, M. R., Shihua, T. and Burton, D. L. 1997. Vesicular-arbuscular mycorrhizae mediated uptake and translocation of P and Zn by wheat in a calcareous soil. Canadian Journal of Plant Science. 77: 339-346.
  23. Hardi, K., and Leyton, L. 1981. The influence of vesicular-arbuscular mycorrhiza on growth and water relations of red clover. New Phytologist. 89: 599-608.
  24. Ibijbijen, J., Urquiaga, S., Ismaili, M., Alves, B. J. R., and Boddey, R. M., 1996. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition and nitrogen fixation of three varieties of common beans. New Phytologist. 134: 353-360.
  25. INVAM: http://invam WVU. Edu/Myc. Info/Methods/assay/infactors.htm.
  26. Kothari, S. K., Marschner, H., and Romheld, V., 1990. Effect of vesicular arbuscular mycorrhizal fungi and rhizosphere microorganisms on manganese reduction in the rhizophere and manganese concentration in maze. New Phytologist, 117: 649-655.
  27. Kothari, S. K., Marschner, H. and Romheld, V. 1991. Contribution of VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant and Soil. 131: 177-185.
  28. Kucey, R. M. N., and Janzen, H. H. 1987. Effect of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under green house. Plant and Soil. 104: 71-78.
  29. Kwapata, M. B. Hall, A. E. 1985. Effects of moisture regime and phosphorus on mycorrhizal infection, nutrient uptake, and growth of cowpeas [Vigna unquiculata (L.) Walp]. Field Crops Research. 12: 241-250.
  30. Levy, Y. Syversen, J. P. and Nemec, S. 1983. Effect of drought stress and vesicular-arbuscular mycorrhizae on citrus transpiration and hydraulic conductivity of roots. New Phytologist. 93: 61-66.
  31. Li, X. L., Marschner, H. and George, E. 1991. Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root to shoot transport in white clover. Plant and Soil. 136: 49-57.
  32. Lu, S., and Miller, M. H. 1988. The role of VA mycorrhizae in the absorption of P and Zn by Maize in field and growth chamber experiments. Canadian Journal of Soil Science. 69: 97-109.
  33. Marschner, H., and Dell. B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil. 159: 89-102.
  34. Medeiros, C. A. B. Clark, R. B. and Ellis, J. R. 1994. Growth and nutrient uptake of sorghum cultivated with vesicular-arbuscular mycorrhiza isolates at varying pH. Mycorrhiza. 4: 185-191.
  35. Mohammad, M. J. Pan, W. L. and Kenndy, A. C. 1996. Wheat responses to vesicular-arbuscular mycorrhizal fungal inoculation of soils from eroded toposequence. Soil Sci. Soc. Am. J. 59: 1086-1090.
  36. Mohammad, M. J. Pan, W. L., and Kennedy, A. C. 1998. Seasonal mycorrhizal colonization of winter wheat and its effect on wheat growth under dryland field conditions. Mycorrhiza. 8: 139-144.
  37. Norris, J. R., Read, D. J. and Varma, A. K. (eds). 1992. Methods in Microbiology. Volume 24. Techniques for the Study of Mycorrhiza, Academic Press. P. 450.
  38. O-Keefe, D., M. and Sylvia, M. 1991. Mechanisms of the vesicular-arbuscular mycorrhiza plant growth response. In: Hand Book of Mycology. D. K. Arora, B. Rai, K. G. Mukerji, and G. R. Knudsen (eds.). Marcel Dekker Publisher, New York, PP. 35-57.
  39. Pacovsky, R. S., and Fuller, G. 1988. Mineral and lipid composition of Glycine-Glomus-Bradyrhizobium Physiologica plantarum. 72: 733-746.
  40. Raju, P. S., Clark, R. B., Ellis, J. R. and Maranville, J. W. 1990. Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperature. Plant and Soil. 121: 165-170.
  41. Ruiz-Lozano, J. M., and Azcon, R. 1995. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiologica plantarum. 95: 472-478.
  42. Safir, G. R., Boyer, J. S. and Gerdman, J. W. 1972. Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiology 49: 700-703.
  43. Saggin, O. J., and Siqueira, J. O. 1995. Evaluation of the symbiotic effectiveness of endomycorrhizal fungi for coffee tree. Brazil Journal of Soil Science. 19: 221-228.
  44. Sharma, A. K., Srivastava, P. C. and Johri, B. N. 1994. Contribution of VA mycorrhiza to zinc uptake in plants. Pp. 111-123. In: J. A. Manthey, D. Crowley, and D. G. Luster (eds.). Biochemistry of Metal Micronutrient in the Rhizosphere. Lewis Publishers, Boca Raton.
  45. Sharma, A. K. and Johri, B. N. (eds.). 2002. Arbuscular Mycorrhizae, Interaction in Plants, Rhizosphere and Soils. Oxford and IBH Publishing. New Delhi. P. 308
  46. Simpson, D., and Daft, M. J. 1990. Interaction between water-stress and different mycorrhizal inocula on plant growth and mycorrhizal development in mazie and sorghum. Plant and Soil. 121: 179-186.
  47. Singh, J. P., Karamanous, R. E. and Stewart, J. W. B. 1986. Phosphorus-induced zinc deficiency in wheat on residual phosphorus plots. Agronomy Journal. 78:668-675.
  48. Smith, S. E. and Read, D. J. 1997. Mycorrhizal Symbiosis. Academic Press. P. 587.
  49. Subramanian, K. S. and Charest, C. 1997. Nutritional, growth, and reproductive response of maize (Zea mays) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza. 7: 25-32.
  50. Tarafdar, J. C., and Marschner, H. 1994. Efficiency of VAM hyphae in utilization of organic phosphorus by wheat plants. Soil Science and Plant Nutrition. 40:593-600.
  51. Trimble, M. R. and Knowles, N. R. 1995. Infeluence of vesicular-arbuscular mycorrhizal fungi and phosphorus on growth, carbohydrate partitioning and mineral nutrition of greenhouse cucumber plants during establishment. Canadian Journal of Plant Science. 75: 239-250.