Effect of Spectral Filters and Different Sources of Light on the Growth and Nitrate Concentration of Lettuce under Hydroponics Conditions

Document Type : Research Paper

Authors

Assistant professor, The University of Tabriz, Tabriz, Iran; Professor of Soil Sciences, The University of Tarbiat Modrres, Tehran, Iran., Rresearcher of the East Azarbyjan Agricultural Research Center. Tabriz, Iran, respectively.

Abstract

Lettuce (Lactuca sativa L.) is one of the important salad vegetables, which is consumed daily as contributing to nitrate intakes by humans. The lettuce nitrate contents depend on the plants growing conditions. For example the biochemical reactions within the plant are affected by light intensity and wavelength frequency to the extent that nitrate production and concentrations in the leaves are affected. Two separate experiments were carried out during the spring of 2003 to evaluate the effects of light spectra on the growth rate and nitrate concentrations of the lettuce plant. In the first experiment color filters (bright, blue, green and red) were used to create different light spectra, and in the second experiment different color light sources were used to grow the lettuce plant. The plants were grown under hydroponics conditions in both experiments with completely randomized designs and four replications. The results indicated no significant effects of light sources or filters on the yield of lettuce plant. The fresh weights of the stalks of the mature lettuce plants were significantly reduced by green light so that the ratio of lettuce leaf to stalk was 40 percent greater as compared with the control. The chlorophyll index for lettuce leaf improved in the blue light, however, other light sources had no significant effect on the leaf chlorophyll index as compared with the control. The concentrations of nitrate in lettuce were highest under green light or green filter, which were significantly different from those concentrations of the control samples. The lowest nitrate concentrations of 670 mg/kg were measured with red light and 800 mg/kg with bright filter, 1000 mg/kg for red filter, and 1300 mg/kg of fresh lettuce leaf with bright filter. It appears that the level of nitrate concentrations can not be controlled by color filters but more research in this area is recommended.

Keywords


  1. بهتاش، فرهاد. 1374. بررسی اثر کودهای شیمیایی نیتروژنی در تجمع نیترات در اندامهای قابل مصرف کلم‌پیچ و کرفس. پایان‌نامه کارشناسی ارشد گروه باغبانی دانشگاه تربیت مدرس، تهران، ایران.
  2. زارعی، حسین. 1374. بررسی تجمع نیترات در کاهو و اسفناج در اثر مصرف کودهای ازته. پایاننامه کارشناسی ارشد، گروه علوم باغبانی دانشکده کشاورزی، دانشگاه تربیت مدرس.
  3. زارعی، حسین، فرهاد بهتاش و محمدجعفر ملکوتی. 1375. بررسی اثر مقادیر مختلف کود اوره در تجمع نیترات در سبزی‌های کاهو، اسفناج، کلم‌پیچ و کرفس. خلاصه مقالات پنجمین کنگره علوم خاک ایران، کرج، ایران.
  4. طباطبایی سید جلال و محمد جعفر ملکوتی. 1376. اثر کودهای نیتروژنی روی تجمع نیترات در سیب زمینی. نشریه علمی پژوهشی خاک و آب. جلد 11 شماره 1، تهران، ایران.
  5. ملکوتی‌، محمدجعفر و مهدی‌ همایی‌. 1382. حاصلخیزی‌ خاکهای‌ مناطق‌ خشک‌ «مشکلات‌ و راه‌ حلها». انتشارات‌ دانشگاه‌ تربیت‌ مدرس. چاپ دوم با بازنگری کامل، تهران‌، ایران.
  6. ملکوتی، محمدجعفر. 1381. بررسی منشاء و روشهای کاهش آلاینده‌های نیترات و کادمیم در شالیزارهای شمال کشور. گزارش نهایی. سازمان تحقیقات و آموزش کشاورزی. وزارت جهاد کشاورزی. تهران،‌ ایران.
  7.  1988. Tomatoes, cucumber and lettuce: Nutrition for rockwool and NFT culture. Ministry of Agriculture, Fisheries and Food. UK.
  8. Backer T. W., C. Foyer and M. Caboche. 1992. Light regulated expression of the nitrate reductase genes in tomato and in the phytochrome deficient area mutant of tomato. Planta, 188: 39-47.
  9. Blomxarnastra M. 1986. Nitrate concentration and reduction in different genotypes of lettuce. J. Am. Sco. Horti. Sci., 111:908-911.
  10. Cantliffe D. J. 1972. Nitrate accumulation under different light intensities. J. Am. Sco. Horti. Sci., 97:152-154.
  11. Cataldo DA., M. Haroon, LE. Schrader, VL. Youngs. 1975. Rapid calorimetric determination of nitrate in plant tissues by nitration of salicylic acid. Comm. Soil Sci. & Plant Ana. 6: 71–80.
  12. CECSCF (Commission of the European Communities Scientific Committee for Food). 1992. Report of the scientific committee for food on nitrate and nitrite, XXXVI Series. Opinion of 19 October 1990. EUR. 13913.
  13. Maynard D. N. and A. V Barker. 1979. Regulation of nitrate accumulation in vegetables. Acta Horticultueae, 93: 153-162.
  14. Mohr H., A. Neininger, and B. Seith. 1992. Control of nitrate reductase and nitrite reductase gene expression by light, nitrate and plasidic factor. Bota. Acta, 105: 81-89.
  15. Morgan D. C. and H. Smith. 1976. Linear relationship between phtochrome photo equilibrium and growth in plants under simulated natural radiation. Nature, 262:210-212.
  16. Mortesen L. M. and E. Stromme, 1987. Effects of light quality on some greenhouse crops. Scientia Horti., 33: 27-36.
  17. Rajapakse N. C. and J. W. Kelly. 1992. Regulation of chrysanthemum growth by spectral filter. J. Am. Sco. Horti. Sci., 117: 481-485.
  18. Santamaria P., A. Elia, F. Serio, and E. Todaro. 1999. A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric., 79:1882-1888.
  19. Stepowska A. J. and W. Kowalczyk. 2000. The effect of growing media on yields and nitrate concentration in lettuce. Acta Horticulturae, 548: 503-510.
  20. Welch M., R. 2002. The impact of mineral nutrients in food crops on global human health. Plant and Soil, 247, 83-90.
  21. WHO (World Health Organization. 1985. Health hazards from nitrates in drinking water. WHO, Regional office for Europe, Geneva, Switzerland.