Effect of Geometric Mean Diameter and Standard Deviation of Soil Texture to Predicting Soil Moisture Coefficients

Document Type : Research Paper

Authors

1 Expert Soil and Water Research Institute and Ph.D Student, Tarbiat Modarres University, respectively

2 Ph.D Student, Tarbiat Modarres University, respectively

Abstract

Soil water retention curve is a key function that expresses soil vadose zone characteristics quantitatively. The direct measurement of this curve is time- consuming, laborious and costly. Therefore, many attempts have been made to predict water retention curve from other soil characteristics indirectly. Pedotransfer functions (PTFS) is one of the indirect methods. The objective of this research was to study the effect of geometric mean diameter (dg) and geometric standard deviation (σg) calculated the basis of three and nine soil particle size classes in the prediction of soil water retention curve and Van Genuchten equations parameters applying pedotransfer functions. Consequently, 40 loamy soil samples, including 35 samples for prediction and 5 samples for validation, were randomly collected from Karaj area. Particle size distribution, bulk density, calcium carbonate and organic carbon precentages were determined with the hydrometery, cold, acid neutralization and Walkly and Blacks methods, respectively. Soil water retention curve was obtained using pressure plates. The best subset of independent variables for estimation of soil water retention curve and Van Genuchten equations parameters were selected by best subset regression command. Regression equations were obtained using multiple linear regressions. The results indicate that there is no significant difference in calculations in predicting point estimation PTFS by using dg or σg obtained from the data of threee soil particle size classes or nine soil particle size classes. However, in the case of parametric estimation of water retention at tensions of 10, 33, and 100 kPa, using dg and σ g obtained from the data of nine soil particle size classes and at tensions of 300, 500, 1500 kPa than using dg and σ obtained from the data based on three soil particle size classes made more valid predictions. Statistical analysis indicated high validity of derived PTFs. 

Keywords


  1. آریا، پروین و میرخانی، رسول،1384، روشهای اندازه‌گیری ویژگیهای فیزیکی خاک، نشریه فنی شماره 479، مؤسسه تحقیقات خاک و آب.
  2. برزگر، عبدالرحمن، 1380، مبانی فیزیک خاک، چاپ اول، انتشارات دانشگاه شهید چمران اهواز، اهواز، ایران.
  3. خداوردیلو، حبیب و همایی، مهدی، 1381، اشتقاق توابع انتقالی خاک به منظور برآورد منحنی مشخصه رطوبتی، مجله تحقیقات مهندسی کشاورزی، شماره 10، جلد 3، ص 46-35.
  4. رضایی، عبدالمجید و سلطانی، افشین، 1377، مقدمه‌‌ای بر تحلیل رگرسیونی کاربردی، انتشارات دانشگاه صنعتی اصفهان، اصفهان، ایران.
  5. علی احیایی، مریم و بهبهانی‌زاده، علی اصغر، 1372، شرح روش‌های تجزیه ‌شیمیایی خاک، جلد اول، نشریه شماره 893، مؤسسه تحقیقات خاک و آب.
  6. فرخیان، احمد و همایی، مهدی a1381، اشتقاق توابع انتقالی خاک‌های گچی به منظور برآورد نقطه‌ای منحنی رطوبتی، مجموعه مقالات هشتمین کنگره علوم خاک ایران.
  7. فرخیان، احمد و همایی، مهدی b1381، برآورد پارامتریک ویژگی‌های هیدرولیکی خاک‌های گچی با استفاده از توابع انتقالی خاک، مجموعه مقالات هشتمین کنگره علوم خاک ایران.
  8. قربانی دشتکی، شجاع و همایی، مهدی، 1381، برآورد پارامتریک توابع هیدرولیکی بخش غیراشباع خاک با استفاده از توابع انتقالی، مجموعه مقالات هشتمین کنگره علوم خاک ایران.
  9. Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Adv. Soil Sci. Soc. Am. J. 9: 177-213.
  10. Briggs, L. J., and shantz, H. L. 1912. The wilting coefficient and its indirect measurement. Botanical Gazette. 53: 20-37.
  11. Gupta, S. C. and W. E. Larson. 1979. Estimating soil water retention characteristic from particle size distribution, organic matter percent and bulk density. Water Resources. Res. 15: 1633-1635
  12. Minasny, B., A. B. McBratney and K. L. Bristow. 1999. Comparison of different approches to the development of pedotranfer functions for water retention curves. Geoderma. 93: 225-253.
  13. Rawls, W. J., Brakensiek, D.L. and saxton, K. E. 1982. Estimation of soil water properties. Trans. ASAE. 25: 1316- 1320.
  14. Ryan, B. F. and B. L. Joiner. 1994. Minitab Handbook. Durbuy press. 483 pp.
  15. Salchow, E., R. Lal, N. R. Fausey and A. Ward. 1966. Pedotransfer functions for variable alluvial soil in southern Ohio. Geoderma. 73: 165-181.
  16. Salter, P.J. Berry. G., and williams, J. B. 1966. The influence of texture on the moisture characteristics of soils: III. Quantitative relationships between particle size, composition and available water capacity.J. Soil Sci. 17: 93-98.
  17. Shirazi, M. A. and L. Borsma. 1984. A unifying quantitative analysis of soil texture. Soil Sci. Soc. Am. J. 48: 142-147.
  18. Van Genuchten, M. T., F. J. Leij and S. R. Yates, (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils″. EPA/ 600/2-91/ 065, US Salinity Laboratory, USDA- ARS, Riverside, CD, pp: 85.
  19. Van Genuchten, M. Th. 1980. A closed- from equation for perdicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898.
  20. Vereecken, H., J. Meas., J. Fegen and P. Davius. 1989. Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Sci. Soc. Am. J. 148 (6): 389-403.
  21. Wagner, B., V. R. Tarnawaski, V. Hennings, V. Muller, G. Wessolek and R. Plagge. 2001. Evaluation of pedotransfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma. 102: 275-297.