Evaluation of Rock Phosphate, Sulfur and Thiobacillus Application Affecting the Yield and Quality of Soybean and their Residual Effects on Corn Growth

Document Type : Research Paper

Authors

Abstract

This experiment was carried out at Karaj Soil and Water Research Station during 2002 and 2003 for evaluation of rock phosphate, sulfur, and Thiobacillus on the yield and quality of soybean and their residual effects on corn growth. The experiment was based on a randomized complete block design with six treatments and four replications. The treatments were: T1=control; T2=Triple superphosphate; T3=rock phosphate; T4=rock phosphate + sulfur; T5=rock phosphate + sulfur+ Thiobacillus inoculum; and T6=rock phosphate + sulfur + manure. No phosphorus fertilizer was applied in the control treatment (T1) during the first year, while in the second treatment (T2) 150 kg ha-1 of triple superphosphate was applied in a band below the seeds. Each one of rock phosphate and sulfur was applied in the form of powder at a rate of 300 kg ha-1Thiobacillus inoculant was used at a rate of one kg ha-1 (108cells g-1 inoculum). Composted cow manure was also used at a rate of 10 tons ha-1. Soybean seeds of Williams variety were inoculated with a Bradyrhizobium japonicum before sowing. A  SC 704 variety of corn planted in the second year in the same plots used for soybean. No phosphorus fertilizers were applied during the second year, while in T5, Thiobacillus inoculant was used. Soil samples were collected each year from 0-30 cm depth following harvest and leaf sampling. Results of first year indicated that the application of triple superphosphate improved the yield as compared with the control though not significantly (even at 5 % level). Rock phosphate application also increased the yield though less than triple superphosphate. T5 increased the yield significantly as compared with the control but no significant differences (at 5 % level) were observed among yields of T5, T2 and T3.  There was no significant differences among treatments respect with seed oil concentration. In the second year, the highest forage yield of 67190 kg ha-1 was obtained in T5 which was significantly (at 5 % level) differ from T6. No significant yield differences were obtained with the other treatments at 5 % level. T2 (triple superphosphate) improved the yield as compared with the control but this increase was not significant.

Keywords


  1. امامی، ع. 1375. روشهای تجزیه گیاه. نشریه فنی شماره 982، موسسه تحقیقات خاک و آب، نشر آموزش کشاورزی، کرج، ایران.
  2. بشارتی کلایه، ح. 1377. بررسی اثرات کاربرد گوگرد همراه با گونه‌های تیوباسیلوس در افزایش قابلیت جذب برخی از عناصر غذایی درخاک. پایان نامه کارشناسی ارشد گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران.
  3. سالار دینی، ع. 1371. حاصلخیزی خاک. چاپ چهارم، شماره 1739، انتشارات دانشگاه تهران، تهران، ایران.
  4. علی احیائی، م. و ع. ا. بهبهانی زاده. 1372. شرح روشهای تجزیه خاک (جلد اول). موسسه تحقیقات خاک و آب، نشریه شماره 893، تهران، ایران.
  5. کوچک‌زاده، ی.، م. ج. ، ملکوتی و ک. خاوازی. 1380. نقش گوگرد، تیوباسیلوس، حل کننده‌های فسفات و تفاله چای در تأمین فسفر مورد نیاز ذرت از خاک فسفات. مجله خاک و آب، ویژه نامه مصرف بهینه کود، جلد 12، شماره 14، مؤسسه تحقیقات خاک و آب، تهران، ایران.
  6. ملکوتی، م. ج. 1378. کشاورزی پایدار و افزایش عملکرد با بهینه سازی مصرف کود در ایران. چاپ دوم، نشر آموزش کشاورزی، سازمان تات، وزارت کشاورزی، کرج، ایران.
  7. 2003. Sulfate- VS. Elemental sulfur Part ll:Characterstics of s oxidation sou. / URL: http// WWW. Back- To- basics. Net/agrifacts/ pdf/ b2b2 9 b. pdf.
  8. Aguilar, S. and A. Van Diest. 1981. Rock –phosphate mobilization induced by the alkaline uptake pattern of legumes utilizing symbiotically fixed nitrogen. Plant and Soil, 61:27-42.
  9. Chien, S. H. 2001. Factors affecting the agronomic effectiveness of phosphate rock: A general review. International Meeting on Direct Application of Phosphate Rock and Related Technology. Kuala Lumpur, Malaysia.
  10. Chien, S. H. 2001. IFOC’S Evaluation of modified phosphate rock products. International Meeting on Direct Application of Phosphate Rock and Related Technology, Kuala Lumpur, Malaysia.
  11. Choudhary, M., L. D. Bailey and T. R. Peck. 1996. Effect of rock phosphate and superphosphate on crop yield and soil phosphorus test in long term fertility plots. Comm. Soil Sci. Plant Anal., 27: 3085-3099.
  12. Cifuentes, F. R. and W. C. Linderman. 1993. Organic matter stimulation of elemental sulfur oxidation in a calcareous soil. Soil Sci. Soc. Am. J., 75: 727-731.
  13. Hagin, J. and B. Tucker. 1982. Fertilization of Dryland and Irrigated Soils, Hidelberg, New York.
  14. Kalbasi, M., F. Filsoof, and Y. Rezai – Nejad. 1988. Effect of sulfur treatment on yield and uptake of Fe, Zn and Mn by corn, sorghum and soybean. J. Plant Nutr., 11(6- 11): 1353 – 1360.
  15. Kalbasi, M., N. Manuchehri, and F. Filsoof, 1986. Local acidification of soil as a means of alleviate iron chlorosis on quince orchards. J. Plant Nutr., 9 (3-7): 1001- 1007.
  16. Kelly, D. P. and A. P. 1984. Genus Thiobacillus. In: Staley, J. T. (ed.) Bergey’s Manual of Systematic Bacteriology. 9th ed . Williams and Wikins, Baltimore.
  17. Khavazi, k., F. Nourgholipour and M. J. Malakouti. 2001. Effect of Thiobacillus and phosphate solubilizing bacteria on increasing P availability from rock phosphate for corn. International Meeting on Direct Application of Rock Phosphate and Related Technology, Kuala Lumpur, Malaysia.
  18. Kittams, H. H. and O. J. Attoe. 1965. Availability of P in rock phosphate sulfur fusion. Agron. J., 57: 331-334.
  19. Kline, J.S., J.T. Sims, and L. Schilke-Gartely.1989. Response of irrigated corn to sulphur fertilization in the Atlantic costal plain. Soil Sci. Soc. Am. J., 53: 1101-1108.
  20. Kochar, R. K., B. R. Arora and V. K.Nayyar. 1990. Effect of sulfur and zinc application on maize crop. J. Indian Soc. Soil Sci., 38: 339-341.
  21. Kucey, R. M. N. 1983. Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can. J. Soil Sci. 79: 227-234.
  22. Pathiratna, L. S. S., U. P. De, S. Waidyanatha, and O. S. Peries. 1989. The effect of apatite and elemental sulfur mixtures on the growth and P content of Centrocema pubescent. Fertilizer Research, 21:37-43.
  23. Rajan S.S.S. and E. A. Edge. 1980. Dissolution of granulated low grade phosphate rock, phosphate rock / sulphur (Biosuper), and superphosphate in soil. New Zealand Journal of Agricultural Research, 23: 451-456.
  24. Rosa, M. C., J. Muchovej, J. Muchovej and V. H. Alvarez. 1989. Temporal relation of phosphorus fraction in an oxisol amended rock phosphate and Thiobacillus thiooxidans. Soil. Sci. Soc. Am. J., 53: 1096-1100.
  25. Schofield, P. E., P. E. H. Gregg, and J. K. 1981. Biosuper as a phosphate fertilizer: A glasshouse evaluation. N.Z. J. Expl. Agric., 9: 63-67.
  26. Singh, D. and I. M. Chhibba.1991. Evaluation of some sources of sulfur using maize and wheat as test crops. Indain Soc. Soil Sci., 39: 514-516.
  27. Sperber, J. I. 1958. The incidence of apatite solubilizing organisms in the rhizosphere. Australian Journal of Agricultural Research, 9: 778-781.
  28. Stevenson, F. J. and M. A. Cole. 1999. Cycles of Soil. Second Edition. PP.427. John Wiley and Sons. Inc., New York.
  29. Swaby, R. J. 1975. Biosuper- Biological Superphosphate. In: McLachlan, K. D. (ed.) Sulfur in Australian Agriculture. Sydney University Press, S
  30. Tabatabai, M. A. 1986. Sulfur in Agriculture. Am. Soc. Agron. Madison, WI., U. S. A.
  31. Tisdale, S. L. and W. L. Nelson. 1974. Soil Fertility and Fertilizers. Collier Machmillan, USA.
  32. Vishniac, W. and M . 1957. The Thiobacilli. Bacteriol. Rev., 21: 195- 213.
  33. Wainwright, M. 1984. Sulfur oxidation in soils. Advances in Agronomy, 37: 349-396.
  34. Wollum, A. G. 1982. Cultural methods for soil microorganisms. In: Methods of Soil Analysis, Part. Ed. Page, A. L. et al. PP. 781-801. American Society of Agronomy and soil science society of America, Madison, WI.
  35. Zapata, F. and R. N. Roy. 2004. Use of phosphate rocks for sustainable agriculture. URL: http//www. FAO. Org/documents/ show-cdr. asp? url-file=/ docrep/007/ Y50.