Comparison of the Characteristics and Effects of Commercial Humic Acid Extracted from Cattle and Sheep Manures on Soybean Growth

Document Type : Research Paper

Authors

1 M.Sc. student, Department of Soil Science, Faculty of Agriculture, University of Kerman

2 Associate Professor, Department of Soil Science, Faculty of Agriculture, University of Kerman

3 Professor Assistant professor, Department of Soil Science, Faculty of Agriculture, University of Kerman

Abstract

Extraction of humic substances from animal manures can be considered as one of the optimal management solutions for these wastes. This research aimed to identify the characteristics of humic acid from two sources of cattle and sheep manure at two levels of 100 mg and 200 mg and compare their effects with commercial humic acid on the growth of soybeans in a completely random design in greenhouse conditions. Based on the spectrophotometric ratio, E3/E5, the lowest molecular weight was related to humic acid extracted from sheep manure. The infrared spectroscopy results indicated the presence of phenolic hydroxyl, carboxyl, and aromatic ring functional groups in extracted and commercial humic acid. Phenolic OH was abundant in humic acid extracted from sheep manure, and the peak related to aromatic and aliphatic ring was removed in commercial humic acid. The results showed that humic acids extracted from sheep manure in the amount of 200 mg caused 62% increase in the fresh weight of the shoot, 48% in fresh weight of the root; and cattle manure in the amount of 200 mg increased the height of the shoot by 31%. But, the use of commercial humic acid could not influence the mentioned traits. Based on the results of this study, sheep manure can be considered a suitable source for extracting humic acid; and its application to soybean can be recommendable due to its effect on growth indicators, at the rate of 100 mg.
 
 

Keywords

Main Subjects


  1. حاتمی، ا. شکوهیان، ع. قنبری، ع. و ناصری، ل. 1399. بررسی اثر اسید هیومیک بر برخی ویژگی­های مورفوفیزیولوژیکی و بیوشیمیایی پایه های بادام تحت تنش شوری. مجله علوم باغبانی ایران (علوم کشاوری ایران). جلد 51، شماره 3، صفحات 523 تا 536.
  2. زندسلیمی، س.، صادقی، م.ر.، محبوبی، ع.ا. و رشیدیان، م. 1386. کودهای دامی و آلودگی محیط زیست. دهمین همایش ملی بهداشت محیط. همدان.
  3. سلیمان زاده، گ. سلطانی، ا. ترابی، ب. ابراهیمی، ح. و شاکری، ا. 1399. مدل سازی تأثیر کشت نشایی بر عملکرد و مصرف آب سویا در شرایط گرگان. تولید فرآوری محصولات زراعی و باغی. جلد 10، شماره 3، صفحات 111 تا 125.
  4. شهبازی, ش. فاتح, ا. و آینه بند, ا.1394. مطالعه اثر کاربرد هیومیک اسید و ورمی‎کمپوست بر عملکرد و اجزای عملکرد سه رقم گندم نواحی گرمسیری. تولیدات گیاهی. جلد 38، شماره 2، صفحات 99 تا 110.
  5. شهبازی، ک. مارزی، م. و طباخیان، ش. 1398. بررسی روش­های اندازه­گیری هیومیک اسید و فولویک اسید در مواد کودی. نشریه علمی ترویجی مدیریت اراضی. شماره 7، صفحات 97 تا 114.
  6. طالع فراهی, ف. غلامعلی زاده, ا. و همتی, آ. 1398. اثر اسیدهیومیک استخراجی از منابع مختلف بر صفات آفتابگردان رشد یافته در یک خاک‌ آهکی. تنش‌های محیطی در علوم زراعی. جلد 12، شماره 2، صفحات 617 تا 630.
  7. موسوی، س. 1399. تأثیر میکوریزا و هیومیک اسید بر صفات مورفولوژیک و عملکرد پنبه تحت تنش خشکی. دانش کشاورزی و تولید پایدار (دانش کشاورزی). جلد 30، شماره 1، صفحات 121 تا 139.
  8. نخ زری مقدم، ع. صمصامی، ن. راحمی کاریزکی، ع. و قلی نژاد، ا. 1399. تأثیر تنش کم آبی بر صفات فیزیولوژیک و عملکرد دانه سویا تحت تأثیر تلقیح و عدم تلقیح با قارچ میکوریزا و باکتری ریزوبیوم. تنش­های محیطی در علوم زراعی. جلد 13، شماره 2، صفحات 413 تا 423.
  9. Abakumov E.V., T. Cajthaml and J. Brus. 2013. Humus accumulation, humification, and humic acid composition in soils of two post-mining chronosequences after coal mining. Journal od Soils and Sediments. 13: 491–500.
  10. Aiken G.R. 1984. Evaluation of ultrafiltration for determining molecular weight of fulvic acid. Environmental Science and Technology. 18: 978-981.
  11. Amir S., F. Benlboukht, N. Cancian, P. Winterton and M Hafidi. 2008. Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting. Journal of Hazardous Materials 160: 448–455.
  12. Araújo B.R., L.P. Bruno, M.E. Doumer and A.S. Mangrich. 2017. Evaluation of the interactions between chitosan and humics in media for the controlled release of nitrogen fertilizer. Journal of Environmental Management. 190: 122-131.
  13. Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q., & Metzger, J. D. (2002). The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology.84(1): 7-14.‏
  14. Bellamy L.J. 1975. The Infrared Spectra of Complex Molecules, Chapman and Hall, London.
  15. Ben Mbarek, H., Ben Mahmoud, I., Chaker, R., Rigane, H., Maktouf, S., Arous, A., . & Gargouri, K. 2019. Change of soil quality based on humic acid with date palm compost incorporation. International Journal of Recycling of Organic Waste in Agriculture. 8(3): 317-324.‏
  16. Brown M.E. B. Hintermann and N. Higgins. 2009. Markets, climate change, and food security in West Africa. Environmental Science and Technology. 43: 8016-8020.
  17. Brownell J.R., G. Nordstrom, J. Marihart and G. Jorgensen. 1987. Crop responses from two new leonardite extracts. Science of the Total Environment. 62: 491-499.
  18. Chen Y., N. Senesi and M. Schnitzer. 1977. Information provided on humic substances by E4/E6 ratios. Soil Science Society of American Journal. 41: 352-358.
  19. Durig D.T., J.S. Esterle, T.J. Dickson and J.R. Durig. An investigation of the chemical variability of woody peat by FTIR spectroscopy. Applied Spectroscopy. 42: 1239–1244.
  20. Dursun A., I. Güvenç, and M. Turan. 2002. Effects of different levels of humic acid on seedling growth and macro and micronutrient contents of tomato and eggplant. Acta Agrobotanica. 55: 81-88.
  21. Ertani A., O. Francioso, V. Tugnoli, V. Righi and S. Nardi. 2011. Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. Journal of agricultural and food chemistry. 59: 11940-11948
  22. Gulser F., F. Sonmez and S. Boysan. 2010. Effects of calcium nitrate and humic acid on pepper seedling growth under saline condition. Journal of Environmental Biology. 31: 875-876.
  23. Haddad G, El-Ali F, Mouneimne AH 2015 Humic Matter of Com-post: determination of Humic Spectroscopic Ratio (E4/E6). Current Science International Journal.4:56–72.
  24. Hakan C., A. Vahap Katkat, B. Bulent Asık and M.A. Turan. 2011. Effect of foliar applied Humic acid to dry weight and mineral nutrient uptake of maize under calcareous soil conditions. Communications in Soil Science and Plant Analysis. 42: 29-38.
  25. Hartz T.K. and T.G. Bottoms. 2010. Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. HortScience. 45: 906-910.
  26. Helal A.A, G.A. Murad and A.A. Helal. 2011. Characterization of different humic materials by various analytical techniques. Arabian Journal of Chemistry. 4: 51-54.
  27. Hernandez TC, Garcia JA, Pascual, Moreno JL (2001) Humic acids from various organic wastes and more traditional organic matter: effect on plant growth and nutrient absorption. In: Swift RS, Spark KM (eds) Understanding and managing organic matter in soils, sediments and waters. Proceeding of the 9th international confer-ence of the International Humic Substances Society University of Adelaide, Adelaide, Australia, 21st–25th September 1998.
  28. Jing-min Z., X. Shang-jun, S. Mao-peng, M. Bingyao, C. Xiu-mei and L. Chunsheng. 2010. Effect of humic acid on poplar physiology and biochemistry properties and growth under different water level.  Journal of Soil and Water Conservation. 24: 6-10.
  29. Khattab M., A. Shaban, H.A. El-Shrief and A. ElDeen Mohamed. 2012. Effect of humic acid and amino acids on pomegranate trees under deficit irrigation. I: growth, flowering and Journal of Horticultural Science and Ornamental Plants. 4: 253-259.
  30. Kononova M.M. 1966. Soil organic matter. Pergamon press.
  31. Muscolo A., F. Bovalo, F. Gionfriddo and S. Nardi. 1999. Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biology and Biochemistry.31: 1303-1311.
  32. Nardi, S., Pizzeghello, D., Muscolo, A., & Vianello, A. 2002. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34(11):1527-1536.‏
  33. Nikbakht A., M. Kafi, M. Babalar, Y.P. Xia, A. Luo and N.A. Etemadi. 2008. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition.31: 2155-2167.
  34. Novak J., J. Kozler, P. Janoš, J. Čežı́ková, V. Tokarová and L. Madronová. 2001. Humic acids from coals of the North-Bohemian coal field: I. Preparation and characterization. Reactive and Functional Polymers. 47: 101-109.
  35. Orlove D.S and O.N. Biryukova. 1996. Humin substances of vermicomposts. Agrokhimiia. Nauka Moscow.
  36. Ouatmane A., V. Dorazio, M. Hafidi, J.C. Revel and N. Senesi. 2000. Elemental and spectroscopic characterization of humic acids fractionated by gel permeation chromatography. Agronomie. 20:491-504.
  37. Palazzo A.J, C.E. Clapp, N. Senesi, M.H.B. Hayes, T.J. Cary, J.D. Mao, L. Terry and T.L. Bashore. 2008. Isolation and characterization of humic acids inidaho slickspot soils. Soil Science. 173: 375-386.
  38. Piccolo A., G. Celano and G. Pietramellara. 1993. Effects of fractions of coal-derived humic substances on seed germination and growth of seedlings (Lactuga sativa and Lycopersicum esculentum). Biology and Fertility of Soils. 16: 11-15.
  39. Rajesh P. 2010. Effect of potassium humate and deproteinised Juice (DPJ) on seed germination and seedling growth of wheat and jowar. Annals of biological research. 1: 148-151.
  40. Rivero C, T. Chirenje, L.Q. Ma and G. Martinez. 2004. Influence of compost on soil organic matter quality under tropical conditions. Geoderma. 123: 355-361.
  41. Rubio V., R. Bustos, M.L. Irigoyen, X. Cardona, M. Rojas-Triana and J. Paz-Ares. 2009. Plant hormones and nutrient signaling. Plant Molecular Biology. 69: 61-73.
  42. Schiavon M., D. Pizzeghello, A. Muscolo, S. Vaccaro, O. Francioso and S. Nardi. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). Journal of Chemical Ecology. 36: 662–669.
  43. Sharif, ,  Khattak,  R.A.  and  Sarir,  M.S. 2002. Effect of different levels of lignitic coal drived  humic  acid  on  growth  of  maize  plants. Communication  in  Soil  Science  and  Plant Analysis. 33:3567-3580. (In Persian).
  44. Stevenson F.J. 1982. Humus chemistry: Genesis, Composition, Reactions. John Wiley & sons. New York.
  45. Sun C.Y., J.S. Liu, Y. Wang, N. Zheng, X.Q. Wu and Q Liu. 2012. Effect of long-term cultivation on soil organic carbon fractions and metal distribution in humic and fulvic acid in black soil. Northeast China. Soil Research. 50: 562-569.
  46. Swift R.S. 1996. Organic matter characterization. p.1018-1020. In D.L. Sparks et al. (ed.). Methods of Soil Analysis Part 3-Chemical Methods. Agron. ASA and SSSA, Madison, WI.
  47. Tchegueni S, Koriko M, Koledzi E, Bodjona BM, Kili A, Tchangbedji G, Baba G, Hafidi M 2013 Physicochemical characterization of organic matter during co-composting of shea-nut cake with goat manure. Africa Journal of Biotechnology 12:3466–3471.
  48. Türkmen Ö. 2005. Effects of arbuscular mycorrhizal fungus and humic acid on the seedling development and nutrient content of pepper grown under saline soil conditions. Journal of Biological Sciences. 5: 568-574.
  49. Türkmen, Ö., Dursun, A., Turan, M., & Erdinç, C. (2004). Calcium and humic acid affect seed germination, growth, and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science. 54(3), 168-174.‏
  50. Zhang L., M. Gao, L. Zhang, B. Li, M. Han, A. Kumar and M. Ashraf. 2013. Role of exogenous glycinebetaine and humic acid in mitigating drought stress-induced adverse effects in Malus robusta seedlings. Turkish Journal of Botany. 37: 920-929.
  51. Kuwatsuka, S., Watanabe, A., Itoh, K., & Arai, S. 1992. Comparison of two methods of preparation of humic and fulvic acids, IHSS method and NAGOYA method. Soil Science and Plant Nutrition. 38(1): 23-30.‏
  52. Francioso O, Sanchez-Cortes S, Tugnoli V, Ciavatta C and Gessa C, 1998. Characterization of peat fulvic acid fractions by means of FT-IR, SERS, and 1H, 13C NMR spectroscopy. Appl Spectrosc 52(2): 270–277.
  53. Martı´nez, G.A., Traina, S.J., Logan, T.J., 1998. Characterization of proton affinity reactions in polyelectrolytes: discrete vs. continuous distribution of site approach. Journal of Colloid and Interface Science. 199, 53-62
  54. Deshmukh, A. P., Y. Chen, J. Tarchitzky, B. Chefetz and P. G. Hatcher. 2002. Structural characterization of soil organic matter and humic acids in particle-size fractions of an agricultural soil.Soil Science Society of America Journal Abbreviation. 66: 129-141.
  55. Barancikova, G., Senesi, N., Brunetti, G. 1997. Chemical and spectroscopic characterization of Humic Acids isolated from different Slovak soil. Geoderma. 78: 251–266.
  56. Maxwell, S. (2001). Agricultural issues in food security. Food Security in Sub-Saharan Africa, 32-66.‏
  57. Arancon, N. Q., Lee, S., Edwards, C. A., & Atiyeh, R. 2003. Effects of humic acids derived from cattle, food and paper-waste vermicomposts on growth of greenhouse plants: the 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia 47(5-6): 741-744.‏
  58. Atiyeh, R.M., Lee, S., and Edwards, C.A. 2002. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology. 84: 7-14.
  59. Abedi, T. and Pakniat, H. 2000. Changes in antioxidant enzymes in response to the drought in ten varieties of Canola. Journal of Genetics and Plant Breeding, 46:27- 34.
  60. Bau, H. M., Villaume, C. H., & Mejean, L. 2000. Effects of soybean (Glycine max) germination on biologically active components, nutritional values of seeds, and biological characteristics in rats. Food/Nahrung.44(1): 2-6.
  61. McLean, E. O. 1982. Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and Microbiological P 199-224.
  62. Carter, M.R., and Gregorich, E.G. 2008. Soil Sampling and Methods Analysis. 2nd Edition. Canadian Society of Soil Science Publisher. 823.
  63. Bouyoucos, C.J. 1962. Hydrometer method improved for making particle- size analysis of soil. Agron Jornal. 54: 466-465.
  64. Lebron, I., Suarez, D. L., and Yoshida, T. 2002. Gypsum effect on the aggregate size and geometry of three sodic soils under reclamation. Soil Science Society of America Journal. 66
  65. Bremner, J. M., and Mulvaney, C. S. 1982. Nitrogen-total. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2). 595-624.
  66. : 92-98.
  67. Helmke P.H., and Spark D.L. 1996. Potassium, P 551-574. In: D.L. Sparks and A.L. Page (Eds.), Methods of Soil Analysis. SSSA, Inc. ASA, Inc. Madison, WI
  68. ‏ Lguirati, A., Baddi, G. A., El Mousadik, A., Gilard, V., Revel, J. C., & Hafidi, M. 2005. Analysis of humic acids from aerated and non-aerated urban landfill composts. International Biodeterioration and Biodegradation. 56(1): 8-16.
  69. Hemati, A., Alikhani, H.A., Bagheri Marandi, G., Mohammadi, L., 2012. Assessment the possibility of humic acid extraction from vermicompost with Urea. International Journal of Agriculture. 2: 705-709.