Effect of Cr (VI) on Some Soil Enzymatic Activities and Physiological and Morphological Indices of Portulaca Oleracea L.

Document Type : Research Paper

Authors

1 Associate Professor, Department of Agronomy, Payame Noor University, Iran

2 PhD in Soil Chemistry, Urmia University, Urmia, Iran

3 Assistant Professor, Department of Biology, Payame Noor University, Iran

4 PhD in plant physiology, Shiraz University, Shiraz, Iran

Abstract

The aim of this study was to investigate the effect of chromium heavy metal on soil enzymatic activities and some physiological and morphological indices of portulaca oleracea L., with the local name of Khorfeh. The study was carried out based on a completely randomized design with three replications. Soil samples were infected with different concentrations of chromium (0, 25, 50, 75, and 100 mg kg-1 soil). After reaching equilibrium in the soil, Khorfeh plants were grown. The activity of dehydrogenase, phosphatase, and urease, and some physiological and morphological characteristics of plants was determined under chromium stress, then, the correlation between them was determined. The results showed that soil enzyme activities decreased with increasing chromium concentration in the soil. Root and shoot dry weights had the most negative correlation with chromium concentration. The role of soil enzyme activity in the evaluation of chromium contamination status was determined by the biochemical index of soil fertility, which showed the most negative correlation with shoot dry weight. The correlations between Cr concentration in soil and all the physiological indices of plants were above 0.9%. The dehydrogenase activity in relation to plant physiological indices showed similar behavior to the biochemical index of soil fertility. In general, according to the results of this study, the physiological indices of the plant with higher sensitivity than its morphological indices could indicate Cr contamination in the plant.
 

Keywords

Main Subjects


  1. احمدی ا.، اردکانی سهیل.، 1396، بررسی تجمع کروم و نیکل در خاک اطراف شهرک صنعتی شماره 3 اراک. علوم و تکنولوژی محیط زیست، 22، 5: 87-97.
  2. اله بخش ا.، سیروس مهر ع.، ابراهیمی ا.، شهرکی ن.، 1397. اندوزش و تحمل آلودگی کادمیومی و تأثیر تیمار سیلسیوم بر برخی شاخص های فیزیولوژیک در گیاه خرفه (Portulaca oleracea). مجله پژوهشهای گیاهی. 31. 2: 235-247.
  3. سلامت دوست ر.، قربانی ا.، 1396، بررسی تآثیر کروم بر آسیب پذیری منطقه ترانزیستی تبریز-صوفیان. فصلنامه اکوسیستم های طبیعی ایران، 8، 2: 31-40.
  4. Aja, P. M., Okaka, A. N. C., Onu, P. N., Ibiam, U., and A. J. Urako. 2010. Phytochemical composition of Talinum triangulare (water leaf) leaves. Pakistan Journal of Nutrition. 9(6): 527-530.‏
  5. Al-Khafaji, A. A., and M. A. Tabatabai. 1979. Effects of trace elements on arylsulfatase activity in soils. Soil Science. 127(3): 129-133.
  6. Alloway, B. J., and A. P. Jackson. 1991. The behaviour of heavy metals in sewage sludge-amended soils. Science of the Total Environment. 100: 151-176.‏
  7. Alyazouri, A. H., Jewsbury, R. A., Tayim, H. A., Humphreys, P. N., and M. H. Al-Sayah. 2013. Phytoextraction of Cr (VI) from soil using Portulaca oleracea. Toxicological & Environmental Chemistry. 95(8): 1338-1347.‏
  8. Azizi, E., Rahbarian, R., and A. Mirbolook 2016. Phytoremediation of Cr+6 in Contaminated Soil using portulaca oleracea. Journal of Soil Research (Soil and Water Sciences). 30 (2): 161-172.
  9. Banerjee, M., Mishra, S., and J. Chatterjee. 2004. Scavenging of nickel and chromium toxicity in Aulosirafertilissima by immobilization Effect on nitrogen assimilating enzymes. Electronic Journal of Biotechnology. 7(3): 13-14.
  10. Barabasz, W., Chmiel, M., Galus, A., and I. Paśmionka. 1998. Ekotoksykologiachromu. ChemiaiInżynieriaEkologiczna. 5(8-9): 665-674.‏
  11. Barcelo, J., and C. Poschenrieder. 2004. Structural and ultrastructural changes in heavy metal exposed plants. In Heavy metal stress in plants (pp. 223-248). Springer, Berlin, Heidelberg.
  12. Barrs, H. D., and P. E. Weatherley. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian journal of biological sciences. 15(3): 413-428.‏
  13. Belyaeva, O. N., Haynes, R. J., and O. A. Birukova 2005. Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biology and Fertility of Soils. 41(2): 85-94.‏
  14. J.M. and Mu Lvaney. R.G. (1982) Nitrogen total.
  15. Davies Jr, F. T., Puryear, J. D., Newton, R. J., Egilla, J. N., and J. A. Saraiva Grossi. 2002. Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition. 25(11): 2389-2407.
  16. ‏Diaz-Ravina, M., and E. Baath. 1996. Development of metal tolerance in soil bacterial communities exposed to experimentally increase metal levels. Applied and Environmental Microbiology. 62(8): 2970-2977.‏
  17. Dick, W. A., Cheng, L., and P.Wang. 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biology and Biochemistry. 32(13): 1915-1919.
  18. ‏Di Toppi, L. S., and R. Gabbrielli. 1999. Response to cadmium in higher plants. Environmental and experimental botany. 41(2): 105-130.‏
  19. Ezekwe, M. O., Omara-Alwala, T. R., and T. Membrahtu. 1999. Nutritive characterization of purslane accessions as influenced by planting date. Plant Foods for Human Nutrition. 54(3): 183-191.‏
  20. Frankenberger Jr, W. T., Johanson, J. B., and C. O. Nelson. 1983. Urease activity in sewage sludge-amended soils. Soil Biology and Biochemistry. 15(5): 543-549.
  21. Hiroyuki, O., and H. Tsutomu. 1983. Oligotrophic bacteria on organic debris and plant roots in a paddy field soil. Soil Biology and Biochemistry. 15(1): 1-8.‏
  22. Huang, Q., and H.Shindo. 2001. Contparison of the influence of Cu, Zn, and Cd on the activity and kinetics of free and intntobilized acid phosphatase. Soil Science and Plant Nutrition. 47(4): 767-772.
  23. Juma, N. G., and M. A. Tabatabai. 1978. Distribution of phosphomonoesterases in soils. Soil Science. 126(2): 101-108.‏
  24. Kobus, J. 1995. Biologiczneprocesy a ksztaltowaniezyznoscigleby. ZeszytyProblemowePostępówNaukRolniczych. 421: 209-219.‏
  25. Kucharski, J. 1997. Relacjemiędzyaktywnościąenzymów a żyznościągleby. W: Drobnoustroje w środowisku. Występowanie, aktywnośćiznaczenie. Pr. zbior. Red. W. Barabasz. Kraków. AR. 327-347.‏
  26. Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology. 148: 350-382.‏
  27. Lityński T. Jurkowska H and Gorlach E.; 1976. Analizachemiczno-rolnicza [Chemical and agricultural analysis]. PWN Warszawa: 129-132; [in Polish].
  28. MacFarlane, G. R., and M. D. Burchett. 2001. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine pollution bulletin. 42(3): 233-240.‏
  29. Manivasagaperumal, R., Vijayarengan, P., Balamurugan, S., and G.Thiyagarajan2011. Effect of copper on growth, dry matter yield and nutrient content of Vigna radiata (L.) Wilczek. Journal of Phytology. 3(3): 53-62.‏
  30. Marchiori, M., DeMelo, W. J., Chelli, R. A., and S. A. S. Leite 1998. Total soil nitrogen, nitrogen in the microbial biomass and enzyme activity in a soil under different types of use. In Proc. 16th World Congress of Soil Science, Montpellier, France, CD ROM.
  31. Marzadori, C., Ciavatta, C., Montecchio, D., and Gessa, C. 1996. Effects of lead pollution on different soil enzyme activities. Biology and Fertility of Soils. 22(1): 53-58.‏
  32. S.R., cole. C.V., Watanabe. F.S. and Dean. L.A. (1954). Estimation22) of available phasphorus in soils by extraction with sodium bicarbonate. Cire. U.S.Dep. Agric. 939.
  33. Otabbong, E. 1989. Chemistry of Cr in Some Swedish Soils: 1. Chromium Speciation in Soil Extracts: A Comparison of Different Methods. Acta AgriculturaeScandinavica. 39(2): 119-129.
  34. Parry, O., Okwuasaba, F. K., and C. Ejike. 1987. Skeletal muscle relaxant action of an aqueous extract of Portulaca oleracea in the rat. Journal of ethnopharmacology, 19(3): 247-253.‏
  35. Premachandra, G. S., Saneoka, H., Fujita, K., and S. Ogata. 1993. Water stress and potassium fertilization in field grown maize (Zea mays L.): effects on leaf water relations and leaf rolling. Journal of Agronomy and Crop Science. 170(3): 195-201.‏
  36. Rath, M., Mishra, C. S. K., and R. C. Mohanty. 2010. Microbial population and some soil enzyme activities in iron and chromite mine spoil. International journal of Ecology and Environmental sciences. 36(2/3): 187-193.‏
  37. Runowska-Hrynczuk, B. 1992. Przydatnoscwskaznikowaktywnoscibiologicznejgleby do ocenystanujejzyznosci. PamiętnikPuławski. 100: 187-200.‏
  38. Salazar, S., Sánchez, L. E., Alvarez, J., Valverde, A., Galindo, P., Igual, J. M., and I. Santa-Regina. 2011. Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering. 37(8): 1123-1131.
  39. ‏Sikora, L.J.,Yakovchenko, V., and D.D. Kaufman. 1995. A proposed soil-quality indicator. In: Cook, H.F., and Lee, H.C. (Eds.): Soil Management in Sustainable Agriculture. Wye College Press: 312 – 318.
  40. R.R. (1993) Ammonium acetate expectable elements. In: Martin, R., Carter, S. (Eds), soil sampling and method of Analysis. Lewis publisher, Florida,USA, pp.39-43.
  41. Singh, V. P. 1995. Toxic metal cadmium: phytotoxicity and tolerance in plants. Advances in environmental science technology. New Delhi: Ashish Publication House. 225-256.
  42. Stephan, J. M., 1994. Purslane. Fact sheet HS-651. Florida Cooperative Extension Service Institute of Food and Agriculture Science. University of Florida. 7 pp.
  43. Stêpniewska, Z., A. and Wolinska. 2005. Soil dehydrogenase activity in the presence of chromium [III] and [VI]. International Agrophysics. 19(1).‏
  44. Unnikannan P and Baskaran L. 2010. Chromium stress in paddy; (i) Nutrient status of paddy under chromium stress; (ii) Phytoremidiation of chromium by aquatic and terrestrial weeds. 333(8)597-607.
  45. Tabatabai, M. A., and J. M. Bremner. .1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil biology and biochemistry. 1(4): 301-307.‏
  46. Tabatabai M.A. Page AL. Miller RH and Keeney DR. 1982. Methods of soil analysis. Part 2: chemical and microbiological properties. Soil enzymes. Soil Science of America, Madison. 907-943.
  47. Thalmann, A. 1968. ZurMethodik der Bestimmung der DehydrogenaseaktivitAtim Boden mittelstriphenytetrazoliumchlorid (TTC). LandwirtschForsch. 21: 249-258.‏
  48. Vernay, P., Gauthier-Moussard, C., and A. Hitmi. 2007. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Loliumperenne L. Chemosphere. 68(8): 1563-1575.‏
  49. Walkley, A. 1947. Organic carbon by the Walkley-Black oxidation procedure. Soil science. 63: 251-264.
  50. Watanabe, H., 1984. Accumulation of chromium from fertilizers in cultivated soils. Soil Science and Plant Nutrition, 30(4), pp.543-554.
  51. Wyszkowska, J., Kucharski, J., Jastrzebska, E., and A. Hlasko. 2001. The biological properties of soil as influenced by chromium contamination. Polish Journal of Environmental Studies. 10(1): 37-42.‏

Zarafshar, M.,Akbarnia. M.,Asgari. H., Hosseini. M., and M. Rahaie. 2015. Physiological and biochemical changes in wild pear (Pyrus boisseriana) seedlings in response to irrigation changes. Applied Biology. 28 (1): 59-78.