Effects of Glutamic Acid and Aspartic Acid in Reducing Lead Stress in Lemongrass (Melissa officianlis)

Document Type : Research Paper

Authors

1 Department of Soil Science, Faculty of Agriculture, Razi University, Kermanshah

2 Assistant professor, Department of soil Science, Faculty of Agriculture, Razi University, Kermanshah, Iran

3 Department of Plant Genetics and Production, Faculty of Agriculture, Razi University, Kermanshah, Iran

Abstract

The use of chelating agents has been introduced as a suitable strategy to reduce the detrimental effect of heavy metals in plants. To investigate the impacts of aspartic acid (AA) and glutamic acid (GA) in alleviating lead (Pb) stress in lemongrass (Dracocephalum ruyschiana), a factorial experiment was conducted based on a completely randomized design with three replications, in the greenhouse of Razi University, in 2023. The treatments included Pb contamination at three levels (0, 150, and 300 mg.kg-1 soil as Pb (NO3)2), aspartic acid (AA) at three levels (0, 100, and 200 mM), and glutamic acid (GA) at three levels (0, 100, and 200 mM). Both acids were used as foliar application. The results showed that the highest proline content (8.12 μmol.g-1) and soluble sugars (2.94 mg.g-1) were obtained in 300 mg.kg-1 of Pb, without AA and GA, which shows an increase of 320% and 285%, respectively, compared to the control (without Pb and chelating agents). Also, the highest amount of shoot and root dry weights, plant height, root length, and volume were found in the treatment of 200 mM of AA and GA, and without Pb. In general, AA and GA, as foliar spray could significantly reduce the adverse effects of Pb on the crop growth characteristics. Thus, application of these chelating agents is a convenient method to diminish the effect of Pb stress on lemongrass.

Keywords

Main Subjects


  1. جهانی، رحیمه؛ حسنی، عباس و صمدی، عباس (1396). تأثیر محلول­پاشی اوره، اسید آسپارتیک و اسید گلوتامیک بر ویژگی­های رشدی، فیزیولوژیکی و بیوشیمیایی گیاه آگاستاکه (Agastache foeniculum). تحقیقات کاربردی خاک، 5(2)، 95-107.
  2. غفاری­نژاد، سیدعلی؛ نورقلی­پور، فریدون و غیبی، محمدنبی (1399). محرک­های رشد گیاهی، نقش آن­ها در فیزیولوژی گیاه، جذب عناصر غذایی و مقابله با تنش­های محیطی. نشریه مدیریت اراضی، 8 (1)، 48-67.
  3. قربانلی، مه­لقا و کیاپور، عادله (1393). اثرات غلظت های مختلف سرب و مس بر مقدار مالون­دآلدهید، پرولین و فعالیت آنزیم­های پراکسیداز و کاتالاز در گیاه دارویی خرفه (Portulaca oleracea L.). تحقیقات گیاهان دارویی و معطر ایران. 30(1)، 68-83.
  4. کاظم­پور، علی؛ شرقی، یونس؛ مدرس­ثانوی، سیدعلی­محمد؛ زاهدی، حسین و سفیدکن، فاطمه (1402). اثر محلول­پاشی اسیدهای آمینه بر خصوصیات مورفوفیزیولوژیک و اسانس آویشن دنایی تحت رژیم­های مختلف آبیاری. فرآیند و کارکرد گیاهی، 12(53)، 71-90.
  5. کشته­گر، مهدی؛ صفی­پور­ افشار، اکبر و نعمت­پور، فاطمه ­سعید (1393). اثر فلزات سنگین مس و سرب بر برخی صفات رشدی، میزان پرولین و پراکسیداسیون لیپیدی در دو رقم ماش. اکوفیزیولوژی گیاهان زراعی، 8(31)، 363-374.
  6. کوچکی، علیرضا؛ نصیری محلاتی، مهدی و نجفی، فرزاد (1383).تنوع زیستی گیاهان دارویی و معطّر در بوم نظام­های زراعی ایران. مجله پژوهشهای زراعی ایران، 2(2)، 208-215.
  7. Abdelkader, S. M., Elkhishin, I. A., Mesallam, D., and Abdelwahab, M. (2023). Lemongrass (Cymbopogon Citratus): Health beneficial perspective. European Chemical News, 12(1), 3422-3426.
  8. Bates, L. S., Waldren, R. P., and Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 29, 205-207.
  9. Gurrieri, L., Merico, M., Trost, P., Forlani, G., and Sparla, F. (2020). Impact of drought on soluble sugars and free proline content in selected arabidopsis mutants. Biology, 9 (11), 367. https://doi.org/10.3390/biology9110367
  10. Huang, X., luo, D., Chen, x., Wei, L., Liu, Y., Wu, Q., Xiao, T., Mai, X., Liu, G., and Liu, L., (2019). Insights in to heavy metals leakage in chelator-induced phytoextraction of Pb-and Ti contaminated soil. International Journal of Environmental Research and Public Health, 16(8), 1328. https://doi.org/10.3390/ijerph16081328
  11. Hussain, I., Siddique, A., Ashraf, M., Rasheed, R., Ibrahim, M., Iqbal, M., Akbar, S., and Imran, M. (2017). Does exogenous application of ascorbic acid modulate growth, photosynthetic pigments and oxidative defense in okra (Abelmos chusesculentus) under lead stress? Acta Physiologiae Plantarum, 39, 144. https://doi.org/:10.1007/s11738-017-2439-0
  12. Khan, I.., Iqbal, M., Ashraf, M. Y., Ashraf, M. A., and Ali, S. (2016). Organic chelats-mediated enhanced lead (Pb) uptake and accumulation is associated with higher activity of enzymatic antioxidants in spinach (Spinace aoleracea). Journal of Hazardous Materials, 317, 352-361. https://doi.org/:10.1016/j.jhazmat.2016.06.007
  13. Klute, A. (1986). Methods of soil analysis: Part 1 and 2, Physical and chemical methods. 2nd Edition, American Society of Agronomy; Soil Science Society of America, Madison, Wis., USA. ISBN: 9780891180883, 0891180885
  14. Kocal, N., Sonnewald, U., and Sonnewald, S. (2008). Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction in tomato. Plant Physiology, 148, 1523-36. https://doi.org/10.1104/pp.108.127977
  15. Kochert, G. (1978). Carbohydrate determination by the phenol sulfuric acid method. In: Hellebust, J.A., & Craigie, J.S., (Ed) Handbook of Phycological Methods, Physiological and Biochemical Methods. Cambridge University Press, Cambridge, pp. 95-97
  16. Kumar, V., Sing H. J., and Kumar, P. (2019). Heavy metals, accumulation in crop plants: sources, response mechanisms, stress tolerance and their effects. 38-57. In: Contaminants in Agriculture and Environment: Health Risks and Remediation, Chapter: 4. Publisher: Agro Environ Media, Haridwar, India. https://doi.org/10.26832/AESA-2019-CAE-0161-04
  17. Lichtenthaler, H. K., and Wellburn, A. R. (1983). Determination of total carotenoids and chlorophyll a and b of leaf extract in different solvents. Biochemical Society Transactions, 11, 591–592. https://doi.org/10.1042/bst0110591
  18. Liu, L., Luo, D., Yao, G., Huang, X., Wei, L., Liu, Y., Wu, Q., Mai., X., Liu, G., and Xiao, T. (2020). Comparative activation process of Pb, Cd and Tl using chelating agents from contaminated red soils. International Journal of Environmental Research and Public Health, 17 (2), 497. https://doi.org/10.3390/ijerph17020497
  19. Mahdavian, K., Ghaderian, S. M., and Schat, H. (2016). Pb accumulation, tolerance, antioxidants, thiols, and organic acids in metallicolous and non-metallicolous Peganum harmala under Pb exposure. Environmental and Experimental Botany, 126, 21-31. https://doi.org/10.1016/j.envexpbot.2016.01.010
  20. Masoudi, F., Shirvani, M., Shariatmadari, H., and Sabzalian, M. R. (2020). Performance of new biodegradable chelates in enhancing phytoremediation of heavy metals from acontaminated calcareous soil, Journal of Environmental Health Science and Engineering, 18, 655-664. https://doi.org/10.1007/s40201-020-00491-y
  21. Mousavi, S. M., Brodie, G., Payghamzadeh, K., Raiesi, T., and Strivastava, A. K. (2022). Lead bioavailability in the environment: Its exposure and and effects. Journal of Advances in Environmental Health Research, 10(1), 1-14. https://doi.org/10.32598/JAEHR.10.1.1256
  22. Mousavi, S. M., Motesharezadeh, B., Hosseini, H. M., Alikhani, H., and Zolfaghari, A. A. (2018). Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicology and Environmental Safety, 147, 206-216. https://doi.org/10.1016/j.ecoenv.2017.08.045
  23. Niazy, M. M. (2018). Role of biochar di-ammonium phosphate and aspartic acid on lead uptake in lettuce (Lactuca satival) under lead stress, Egpyt Journal of Applied Science, (1) 33,1-16.
  24. Saburi, M., Haj Seyed Hadi, M., and Taghi Darzi, M. (2014). Effects of amino acids and nitrogen fixing bacteria on quantitative yield and essential oil content of basil (Ocimum basilicum). Agriculture Science Developments, 3 (8), 265-268.
  25. Shafie, F., Bayat, H., Aminifard, M. H. and Daghighi, S. (2021). Biostimulant effects of seaweed extract and amino acids on growth, antioxidants, and nutrient content of yarrow (Achillea millefolium) in the field and greenhouse conditions. Communications in Soil Science and Plant Analysis, 52, 964-975. https://doi.org/:10.1080/00103624.2021.1872596
  26. Sofy, M. R., Seleiman, M. F., Alhammad, B. A., Alharbi, B. M., and Mohamed, H. I. (2020). Minimizing adverse effects of Pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agronomy, 10 (5), 699. https://doi.org/10.3390/agronomy10050699
  27. Zhou, J., Zhang, Z., Zhang, Y., Wei, Y., and Jiang, Z. (2018). Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PloS one, 13 (3), 137-140. https://doi.org/10.1371/journal.0191139.
  28. Zulfiqar, U., Farooq, M., Saddam H., and Anjum, M. (2019). Journal of Environmental Management, 10 https://doi.org/.1016/j.jenvman.2019.109557