Role of Funneliformis mosseae Mycorrhizal Fungus in Absorption, Transfer and Bioaccumulation Pattern of Cadmium and Copper in Pistachio Plant

Document Type : Research Paper

Author

Department of Biology, Payam-e-Noor University

10.22092/ijsr.2024.365604.743

Abstract

The toxicity of metals is an important environmental problem due to their persistence, non-biodegradability, and their bioaccumulation in the organs of living plants and animals.
One of the methods that can be used for reducing the harmful effects of heavy metals especially cadmium and copper,  is the use of mycorrhizal fungus. This research was conducted to determine the effect of the mycorrhizal fungus Funneliformis mosseae on absorption and transfer of cadmium and copper of pistachio cultivar Ahmad Aghaei in response to increasing soil copper and cadmium concentrations. The experiment was performed in factorial form of a completely randomized blocks consist of  three levels of copper (0, 300 and 600 mg/L of copper nitrate),four levels of cadmium (0, 200, 600 and 1000 mg/L of cadmium nitrate) and two treatments: inoculated with F.mosseae and without mycorrhizal inoculum. In all the control and plants treated with cadmium and copper, the length and dry weight of root and stem of mycorrhizal plants were more than non-mycorrhizal plants. Also the amount of cadmium and copper transferred from their root to the aerial part (Translation Factor) was significantly lower than the non-mycorrhizal plants. The results showed that the Bioconcentration Factor in plants inoculated with mycorrhizal fungus was significantly lower than non-mycorrhizal plants. Therefore the symbiosis with F. mosseae caused more stabilization and accumulation of cadmium and copper in the root.
 

Keywords

Main Subjects


  1. Amanifar, S., Aliasgharzad, N., Najafi, N., Oustan, Sh., Bolandnazar, S. (2010). Effect of Arbuscular Mycorrhizal fungi on lead phytoremediation by sorghum (Sorghum bicolor L.). Journal of Soil and Water. 22:155-170.

 

  1. Andrade, S.A.L., Abreu, C.A., de Abreu, M.F., Silveira, A.P.D. (2004). Influence of lead addition on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology. 26:123-131.

 

  1. Audet, P., Charest, C. (2009). Contribution of arbuscular mycorrhizal symbiosis to in vitro root metal uptake: from trace to toxic metal conditions. Journal of Botany. 87(10):913–921.
  2. Bagheri, V., Shamshiri, M., Shirani, H. and Roosta, H. (2012) Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. Journal of Agriculture Science Biochemistry 14:1591-1604.

 

  1. Benavides, M. P., Gallego, S. M., Tomaro, M.L. (2005). Cadmium Toxicity in Plants. Braz. Journal of Plant Physiology. 17: 21-34.

 

  1. Berti, W.R., Cunningham, S.D. 2000. Phytostabilization of metals. In: Raskin, I., Ensley, B.D. (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment. Wiley. New York, pp. 71–88.

 

  1. Cho, U.H., Seo, N.H.(2005). Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science. 168(1): 113-120.
  2. Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C.M., Rea, E. (2008). Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils.  44:501–509.
  3. Dalla vecchia,f., La Rocca,N.,Moro,I. (2005). Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea Canadensis exposed to cadmium. Plant Science.168(2):329-338.
  4. FAO, UNEP, (2020). Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/faostat/en/?#data/.
  5. Ghnaya, T.(2005). Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal of Plant Physioloy. 162: 1133–
  6. Giovannetti, M. and Mosse, B. (1980). An evaluation of techniques for measuring vesicular–arbuscular infection in roots. New Phytologist. 84:489–500.
  7. Guerrero M.M. Ros C.Martínez M.A. Martínez M.C. BarcelóN.L (2005).Biofumigación con solarización. Un método estable de desinfección de suelos de invernadero. Acta Portuguesa de Hort.7(3):111-115.
  8. Gustavo Brunetto , Anderson C. R. Marques , Edicarla Trentin , Paula B. Sete , Cláudio R. F. S. Soares , Paulo A. A. Ferreira , George W. B. de Melo , Jovani Zalamena , Lincon O. S. da Silva, Carina Marchezan , Isley C. B. da Silva , João P. J. dos Santos , Leticia Morsch, .(2023). Arbuscular mycorrhizal fungi inoculation as strategy to mitigate copper toxicity in young field-grown Vines.J viticulture Enol. 38(1): 60-66.
  9. Harahap,L.H.,Hanafiah,A.S. and Guchi,H.( 2018).The effectiveness of mycorrhizal application on the absorption of N and P nutrients from rubber plants on drought stressed land that has been given organic matter. Agroecotechnology.6(1): 167-173.
  10. Jahanbakhshi, Sh., Rezaei, R., Sayyari-Zaman, M.H. (2015). Comparison effect of phytoremediation in cadmium and chromium contaminated soil in Spinacia oleracea and Lepidium sativum. Journal of Water   and Soil .  18(70): 1-11.

 

  1. Jazaeri , M.S. Akhgar A.R .and Sarcheshmehpour M. (2015).Comparison of the native phosphate rock and imported triple superphosphate treated with sulfur and Thiobacillus in transferring lead and Cadmium into Pistachio seedling . Journal of Soil Management and Sustainable Production. 5(3):25-44.

 

  1. Jing, Y., Cui, H., Li, T., Zhao, Z. (2014). Heavy metal accumulation characteristics of Nepalese alder (Alnus nepalensis) growing in a lead-zinc spoil heap, Yunnan, south-western China. iForest– Biogeosci 7: 204–208.

 

  1. Joner, E.J., Briones, R., Leyval, C. (2000). Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil. 226: 227–234.

 

  1. Jones, ,  Benton. ( 2001). Laboratory guide for conducting soil tests and plant analysis CRC press –LLC . ISBN  0-8493-0206-4 (alk paper).

 

  1. Kabata- Pendias, A., Pendias, H. (2001). Trace Elements in Soils and Plants. 3rd ed. CRC Press Inc., Baton Rouge, USA.

 

  1. Kholdbryn, B., Islamzadeh, T. (2002). Mineral nutrition of higher plants. In two volumes Shiraz University Press. (In Persian).

 

  1. Kirkham, M.B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137, 19–32.
  2. Lasat, M.M.(2002). Phytoextraction of toxic metals – A review of biological mechanisms. Joournalof Environmental 31: 109–120.

 

  1. Madani, A., Lakzian, A., Haghnia, Gh., Khorasani, R. 2013. Contribution of External Hyphae of Arbuscular Mycorrhizal Fungi to Transfer Cadmium, Zinc and Phosphorus to White Clover. J. Sci. Technol. Agric. Natur. Resour. Water and Soil Sciences. 17,63: 37-46.

 

  1. Mishra, S., Srivastava, S., Tripathi, R.D., Govindarajan, R., Kuriakose, S.V., Prasad, M.N.V. (2006). Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiology and Biochemistry. 44:25–37.
  2. Nareshkumar, A., Nagamallaiah, G.V., Pandurangaiah, M., Kiranmai, K., Amaranathareddy, V., Lokesh, U., Venkatesh, B. and Sudhakar, C. ( 2015). Pb-Stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut (Arachis hypogaea L.) cultivars. Agricaltural Sciences.6:1283-1297.

 

  1. Ouziad, F., Hildebrandt, U., Schmelzer, E., Bothe, H. (2005). Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol. 162:634–649.
  2. Pandey, V.C. (2013). Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecol Eng. 57: 336–

 

  1. Pandey, V.C., Singh, N., Singh, R.P., Singh, D.P. (2014). Rhizoremediation potential of spontaneously grown Typha latifolia on fly ash basins: study from the field. Ecological Engineering. 71:722–
  2. Rabie, G.H. (2005). Contribution of AM fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. African Journal of Biotechnology. 4(4): 332-345.
  3. Radmehr, (2010) The results of a sample survey design horticultural products in 1387. Ministry of Agriculture, Tehran. (in Farsi).

 

  1. Rajapakse, S., Ghton,  R. E.,  Miller,  Jr. J. (1992). Methods  for studying vesicular –arbuscular mycorrhizal root colonization and related root physical  properties . Methods in microbiology . volum 24 . ISBN 0-12-521524-X.

 

  1. Sai Kachout, S., Ben Mansoura, A. J.C., Leclerc, J. C., Mechergui, R., Rejeb, M. N., Ouerghi, Z. (2010). Effect of heavy metals on antioxidant activities of Atriplex hortensis and A. rosea . Electronic Journal of Environmental Agricultural and  Food Chemistry  9: 444-457.

 

  1. Sara, A.L. de Andrade., Adriana, P.D. da Silveira., (2008) . Mycorrhiza influence on maize development under Cd stress and P supply. Braz Journal of plant physioloy. 20(1):39-50.

 

  1. Shamsaldin, H., Jalali, V. and Jafari, A. (2015). Evaluation of environmental pollution indices around the Sarcheshmeh copper factory.Journal of Agricultural Engineering. 38(2): 37-53.

 

  1. Sun, F.F., da Wen, Z., Kuang, Y.W., Li, J., Zhang, J.G. (2009). Concentrations of sulphur and heavy metals in needles and rooting soils of masson’s pine (Pinus massoniana L.) trees growing along an urban–rural gradient in Guangzhou, China. Environ  Monit Assess.154:263–274.

 

  1. Wang, T.X., Yin, Z.H., Zhang, W., Peng, T., Kang, W.Y. (2013).Chemical constituents from Psoralea corylifolia and their antioxidant alpha-glucosidase inhibitory and antimicrobial activities. China journal of Chinese Materia Medica. 38(14):2328-2333.

 

  1. yang, X., Qin, J., Li, J., Lai, Z., Li, H. ( 2021). Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. J. Hazard. Mater. 406, 124325 https://doi.org/10.1016/j.jhazmat.2020.124325.

 

  1. Yamin Gao a,b , Tingting An b,c , Qiqiang Kuang a,b , Yujie Wu a,b , Shuo Liu a,b , Liyan Liang b,c , Min Yu d,e , Andrew Macrae f,g , Yinglong Chen. (2023). The role of arbuscular mycorrhizal fungi in the alleviation of cadmium stress in cereals: A multilevel meta-analysis. Science of Total Environment.902:1-14

 

  1. Yoon, J. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of Total Environment. 368: 456–

 

  1. Yurekli, F., Kucukbay, Z. (2003). Synthesis of phytochelatins in Helianthus annuus is enhanced by cadmium nitrate. .  Acta Botanica Croatica.  62(1): 21–25.

 

  1. Zhang, H., Xu, N., Li, X., Long, J., Sui, X., Wu, Y., Li, J., Wang, J., Zhong, H., Sun, G.Y. (2018). Arbuscular Mycorrhizal Fungi (Glomus mosseae) Improves Growth, Photosynthesis and Protects Photosystem II in Leaves of Lolium perenne L. in Cadmium Contaminated Soil. Frontiers in Plant Science, 9,1156. doi: 10.3389/fpls.2018.01156

 

  1. Zhou, Q.X., Song, Y.F. (2004). Principles and method of treating contaminated soil remediation, Science Press, Beijing, pp.489.