The impact of threshold levels on soil quality indicators in some orchards and paddy fields in the Marvu'ak region, Lorestan province

Document Type : Research Paper

Author

Lorestan Agriculture and Natural Resources Research Center

10.22092/ijsr.2024.366751.757

Abstract

The present study aimed to compare Integrated and Nemoro soil quality indicators and investigate the impact of determining or not determining critical limits in scoring fuzzy and sigmoidal functions in apricot orchards and paddy fields near the Maru’ak dam in Dorud city, Lorestan province. A total of 20 sites, including 10 apricot orchards and 10 rice fields, were selected for soil sampling. Samples were collected from a depth of 0 to 30 cm, and 16 soil and land properties were identified for the total dataset (TDS). Gravel content, bulk density, texture, salinity, acidity, calcium carbonate percentage, organic carbon, and available nutritional elements including phosphorus, potassium, iron, manganese, zinc, and copper, were measured from laboratory. Slope percentage were also obtained by field observation and google earth software. Principal component analysis was utilized for weight assignment and minimum dataset (MDS) selection. Scoring of soil properties was carried out using fuzzy functions with specified threshold levels for each land use, as well as sigmoid functions without threshold limits. Subsequently, the integrated and Nemoro quality indicators were calculated and classified. Based on the results, soil acidity, available iron, available potassium, and available magnesium were identified as MDS and the most important factors controlling soil quality in the region. For both TDS and MDS, the integrated quality index values were greater than 0.6 (indicating high quality), and the Nemoro quality index values were less than 0.4 (indicating moderate quality). This shows that there is a difference in soil quality evaluation when using various indices. Upon comparing the results, it was found that the MDS indices had similar evaluation to the TDS indices. This indicates that specific properties could be utilized in place of the overall soil properties. Furthermore, the results indicated that the absence of threshold limits in sigmoid functions did not accurately represent the conditions of iron pollution in paddy fields, resulting in slightly higher indices than in orchards. This indicates that establishing threshold limits can greatly impact how results are interpreted and how management strategies are developed. Therefore, experts and researchers must conduct additional research to establish standardized threshold limits for soil characteristics in regions of Iran where such limits are currently lacking.

Keywords


  1. اسمعیلی زاد، اشرف، شکری، رسول، دوات گر، ناصر، و کاری دولت اباد، حسین، 1402. ارزیابی نقش ویژگی‌های زیستی در کیفیت خاک زیر حوضه هنام استان لرستان. زیست شناسی خاک، 11(2)، صص 115-137. https://doi.org/10.22092/ 2023.362579.253
  2. باریکلو، علی، علمداری، پریسا، رضاپور، سالار، تقی زاده مهرجردی، روح الله، 1402. ارزیابی شاخص‌های کیفیت خاک در تیپ‌های مختلف خاک دشت ارومیه. پژوهش های فرسایش محیطی، ۳ (۳)، صص ۱۷۳-۱۹۳.
  3. تقی پور، مژده، یغمائیان مهابادی، نفیسه، و شعبانپور، محمود، ارزیابی شاخص‌های کیفیت خاک با استفاده از تحلیل‌های‌چند متغیره درکاربری‌های مختلف اراضی (مطالعه موردی: توتکابن استان گیلان). مهندسی زراعی، 46(3)، صص 251-271. https://doi.org/10.22055/agen.2023.44957.1684
  4. خسروتهرانی، خ. 1383. زمین­شناسی ایران (رشته زمین­شناسی). انتشارات دانشگاه پیام نور. 344 ص.
  5. رستمی نیا، محمود، نوری، نسیم، کشاورزی، علی، و حمانی، اصغر، 1398. ارزیابی کمّی و پهنه‌بندی پراکنش مکانی شاخص کیفیت خاک در بخشی از اراضی خشک و نیمه‌خشک غرب ایران (مطالعه موردی: منطقه کَنِ ‌سرخ، استان ایلام). تحقیقات آب و خاک ایران، 50(7)، صص 1701-1719. 22059/ijswr.2019.274080.668097
  6. زنگی آبادی، مهدی، گرجی اناری، منوچهر، و کشاورز، پیمان، 1400. تعیین شاخص کیفیت فیزیکی خاک‌های با بافت متوسط و سبک در استان خراسان رضوی. آب و خاک، 35(1)، صص 107-119. https://doi.org/10.22067/jsw.2020.15000.0
  7. شاهپوری، فاطمه، حسن زاده، نسرین، سلگی، عیسی، و ضرابی، محبوبه، 1402. ارزیابی شاخص کیفیت خاک (SQI) در کاربری‌های مختلف شهرستان ملایر با استفاده از روش مجموعه حداقل داده (MDS). نشریه محیط زیست طبیعی، 76(4)، صص 579-592.https://doi.org/ 22059/jne.2022.334297.2339
  8. شکوری کتیگری، مریم، شعبانپور، محمود، دواتگر، ناصر، و وظیفه دوست، مجید، 2021. ارزیابی کیفیت خاک در خاک‌های شالیزاری با عملکردهای متفاوت (مطالعه موردی: کوچصفهان استان گیلان). تحقیقات آب و خاک ایران، 51(12)، صص 3161-3176. https://doi.org/ 22059/ijswr.2020.305420.668660
  9. شهاب آرخازلو، حسین، امامی، حجت، و حق نیا، غلامحسین، 1391. ارزیابی رابطه مدل های تعیین کیفیت خاک و شاخص های پایداری آن در زمین های کشاورزی و مرتعی جنوب مشهد. پژوهش های خاک (علوم خاک و آب)، 26(3 الف)، صص 227-234. https://sid.ir/paper/158905/fa
  10. غفاری نژاد، سید علی، 1396. آزمایش‌های بلند مدت، ضرورتی برای ارزیابی روش‌های مدیریت حاصلخیزی خاک. مدیریت اراضی، 5(2)، صص99-112. https://doi.org/10.22092/lmj.2018.115853
  11. فلاح نصرت آباد، علی. 1399. مروری بر مزایای مصرف سنگ فسفات در اراضی شالیزاری. مجله ترویجی شالیزار، 2(1)، صص 23-32.
  12. کمالی، کوروش، زهتابیان، غلامرضا، مصباح زاده، طیبه، عرب خدری، محمود، شهاب آرخازلو، حسین، و مقدم نیا، علیرضا، 1400. تعیین مؤثرترین ویژگی‌ها به منظور ارزیابی کیفیت خاک در اراضی کشاورزی دشت محمدشهر کرج. آب و خاک، 35(2)، صص 251-266. https://doi.org/10.22067/jsw.2021.15005.0
  13. ملکوتی، محمدجعفر و غیبی، محمدنبی، 1379. تعیین حد بحرانی عناصر غذایی موثر در خاک، گیاه و میوه (درراستای افزایش عملکرد کمی و کیفی محصولات استراتژیک کشور). نشر آموزش کشاورزی. 92 ص.
  14. یغمائیان مهابادی، نفیسه، فیاض، حورا، صبوری، عاطفه، و شیرین فکر، احمد، مقایسه روش‌های ارزیابی کیفیت خاک و ارتباط آن با عملکرد در اراضی چایکاری غرب استان گیلان. پژوهش های خاک، 34(4)، صص 435-450. https://doi.org/10.22092/ ijsr.2021.351656.551

 

  1. Alaboz, P., Dengiz, O. and Demir, S., 2021. Barley yield estimation performed by ANN integrated with the soil quality index modified by biogas waste application. Zemdirbyste-Agriculture, 108(3), 217-226. DOI: 10.13080/z-a.2021.108.028
  2. Arshad, M. A. and Martin, S., 2002. Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, ecosystems and environment, 88(2), pp. 153-160. https://doi.org/10.1016/S0167-8809(01)00252-3
  3. Askari, M.S. and Holden N.M., 2014. Indices for quantitative evaluation of soil quality under grassland management. Geoderma 230, pp. 131-142. https://doi.org/10.1016/j.geoderma.2014.04.019
  4. Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., De Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W. and Mäder, P., 2018. Soil quality–A critical review. Soil biology and biochemistry, 120, pp. 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
  5. Chaudhry, H., Vasava, H. B., Chen, S., Saurette, D., Beri, A., Gillespie, A. and Biswas, A., 2024. Evaluating the Soil Quality Index Using Three Methods to Assess Soil Fertility. Sensors, 24(3),
  6. Cherubin, M. R., Karlen, D. L., Cerri, C. E., Franco, A. L., Tormena, C. A., Davies, C. A. and Cerri, C. C., 2016. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PloS one, 11(3), e0150860. https://doi.org/10.1371/journal.pone.0150860
  7. Couto, C. M. V., Comin, C. H. and da Fontoura Costa, L., 2017. Effects of threshold on the topology of gene co-expression networks. Molecular BioSystems, 13(10), 2024-2035. https://doi.org/10.1039/ C7MB00101K
  8. Derakhshan-Babaei, F., Nosrati, K., Mirghaed, F. A. and Egli, M., 2021. The interrelation between landform, land-use, erosion and soil quality in the Kan catchment of the Tehran province, central Iran. Catena, 204, https://doi.org/10.1016/j.catena.2021.105412
  9. Doran, J. W. and Parkin, T. B., 1994. Defining and assessing soil quality. Defining soil quality for a sustainable environment, 35, pp. 1-21.
  10. Doran, J. W. and Parkin, T. B., 1997. Quantitative indicators of soil quality: a minimum data set. Methods for assessing soil quality, 49, pp. 25-37.
  11. Gee, G. and Bauder, J., 1986. Particle size analysis. In A. Klute, (Ed.), Methods of soil analysis. Part1: hysical and Mineralogical Methods. Agronomy Monograph No. 9 (2nd ed., pp. 383–411). American Society of Agronomy/Soil Science Society of America, Madison.
  12. Golestanifard, A., Santner, J., Aryan, A., Kaul, H. P. and Wenzel, W. W., 2020. Potassium fixation in northern Iranian paddy soils. Geoderma, 375, 114475. https://doi.org/10.1016/j.geoderma.2020.114475
  13. Gopal, B., Shetty, A. and Chaya, D., 2015. Spatial variability of topsoil chemical properties. Indian Journal of Agricultural Research, 49 (2), 134-141. 10.5958/0976-058X.2015.00019.0
  14. Jalali, M. and Matin, N. H., 2013. Soil phosphorus forms and their variations in selected paddy soils of Iran. Environmental Monitoring and Assessment, 185, pp. 8557-8565. https://doi.org/10.1007/s10661-013-3195-2
  15. Karaca, S., Dengiz, O., Turan, İ. D., Özkan, B., Dedeoğlu, M., Gülser, F., Sargin, B., Demirkaya, S. and Ay, A., 2021. An assessment of pasture soils quality based on multi-indicator weighting approaches in semi-arid ecosystem. Ecological Indicators, 121, 107001. https://doi.org/10.1016/j.ecolind.2020.107001
  16. Li, Q., Xu, M., Liu, G., Zhao, Y. and Tuo D., 2013. Cumulative effects of a 17‐year chemical fertilization on the soil quality of cropping system in the Loess Hilly Region China. Journal of Plant Nutrition and Soil Science 176, pp. 249-259. 1002/jpln.201100395
  17. Liu, Z., Zhou, W., Shen, J., Li, S. and Ai C., 2014. Soil quality assessment of yellow clayey paddy soils with different productivity. Biology and Fertility of Soils 50, 537-548. https://doi.org/10.1007/s00374-013-0864-9
  18. Nortcliff, S., 2002. Standardisation of soil quality attributes. Agriculture, ecosystems and environment, 88(2), 161-168. https://doi.org/10.1016/S0167-8809(01)00253-5
  19. Olsen, S. and Sommers, L. 1982. Phosphorus. In A.L. Page (Ed.), Methods of soil analysis. Part 2: Chemical and Microbiological Properties. Agronomy Monograph No. 9 (2nd ed. p. 403–430). American Society of Agronomy/Soil Science Society of America, Madison.
  20. Qi, Y., Darilek, J.L., Huang, B., Zhao, Y., Sun, W. and Gu, Zh., 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province China. Geoderma 149, 325-334. https://doi.org/10.1016/ j.geoderma.2008.12.015
  21. Qin, M.Z. and Zhao, J., 2000. Strategies for sustainable use and characteristics of soil quality changes in urban-rural marginal area: a case study of Kaifeng. Acta Geographica Sinica-Chinese 55, pp. 545–554 (In Chinese with English abstract). https://doi.org/10.11821/xb200005004
  22. Rahmanipour, F., Marzaioli, R., Bahrami, H.A., Fereidouni, Z. and Bandarabadi, S.R., 2014. Assessment of soil quality indices in agricultural lands of Qazvin Province Iran. Ecological Indicators 40, 19-26. https://doi.org/10.1016/j.ecolind.2013.12.003
  23. Raiesi, F., 2017. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological Indicators, 75, pp. 307-320. http://dx.doi.org/10.1016/j.ecolind.2016.12.049
  24. Richards, L., 1954. Diagnosis and improvement of saline and alkali soils. Handbook, 60. US Department of Agriculture.
  25. Romadhon, M. R., Mujiyo, M., Cahyono, O., Dewi, W. S., Hardian, T., Anggita, A., Hasanah, K., Irmawati, V. and Istiqomah, N. M., 2024. Assessing the Effect of Rice Management System on Soil and Rice Quality Index in Girimarto, Wonogiri, Indonesia. Journal of Ecological Engineering, 25(2), 126-139. https://doi.org/10.12911/22998993/176772
  26. Sys, C. Van Ranst, E. Debaveye, J. and Beernaert, F., 1993. Land evaluation part III crop requirements. Agricultural Publications n° 7, G.A.D.C. Brussels. Belgium. 191p.
  27. Triberti, L., Nastri, A., Giordani, G., Comellini, F., Baldoni, G. and Toderi, G., 2008. Can mineral and organic fertilization help sequestrate carbon dioxide in cropland? European Journal of Agronomy, 29(1),13-20. https://doi.org/10.1016/j.eja.2008.01.009
  28. Vasu, D., Singh, S. K., Ray, S. K., Duraisami, V. P., Tiwary, P., Chandran, P., Nimkar, A. M. and Anantwar, S. G., 2016. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70-79. https://doi.org/10.1016/j.geoderma.2016.07.010
  29. Walkey, A. and Black, I., 1934. An examination of the method for determining soil organic matter and a proposed chromic acid titration method. Soil Science, 37, 29–38.
  30. Zahedifar, M., 2023. Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. Catena, 222, 106807 . https://doi.org/10.1016/j.catena.2022. 106807
  31. Zhang Liu G. Xue S. and Song Z., 2011. Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau China. Geoderma 161, 115-125. https://doi.org/10.1016/j.geoderma.2010.12.003
  32. Zhu, Q. and Lin, H., 2011. Influences of soil, terrain, and crop growth on soil moisture variation from transect to farm scales. Geoderma, 163(1-2), 45-54. https://doi.org/10.1016/j.geoderma.2011.03.015.