Development and Evaluation of New Soil Stabilization Technologies to Reduce Runoff and Erosion and Stabilize Drainage Canal Sidewall and Steep Lands in Khuzestan

Document Type : Research Paper

Authors

1 Associate Professor, Soil Conservation and Watershed Management Research Institute, AREEO

2 PhD, Khozestan Agricultural Research, Education, and Natural Resources Center, AREEO

3 PhD, Soil Conservation and Watershed Management Research Institute, AREEO

Abstract

The purpose of this research was to develop a suitable technology for soil retention and stability, and to evaluate its efficiency in the laboratory and field. An experiment was conducted to evaluate the effects of inductive methods on runoff, reduction of sediment yield, and introducing the most suitable method for the lateral stability of irrigation and drainage channels and erosion reduction in the Khuzestan area. In this research, using different methods of soil stabilization and study of runoff changes and erosion resistance of the sidewall of drainage channels and natural areas were done in laboratory and field, using rain simulator. Various stabilizers were used at different concentration levels. At least 340 experiments (with 15 additive modifiers) were conducted on soil samples of the study area, the effect of the methods used was analyzed, and different characteristics were measured. In laboratory studies, for all experiments, 25 kg of soil samples were placed in metal baskets and compressed manually by applying the compression necessary to reach the bulk density of the soil in nature. Experimental treatments were simulated in flumes with 1:1.25 side slopes, similar to the side slopes of drains, at 30, 50 and 80 mm/hr rain (duration of up to 30 minutes). Then, supplementary tests were done in the field. The results showed that all of the stabilization treatments had a significant effect on sediment yield compared with the control sample and confirmed that improvers can play an effective role in controlling erosion of sidewalls of the drainage channels. This study showed that stabilizers reduced sediment up to 90%. Two types of modifiers (Pc and LP) had the greatest effect on reducing the erosion rate from the walls of drainage channels. It was also found that increasing the concentration of stabilizers used in all densities had a significant effect on the reduction of the amount of sediment output. The results indicated that the additives used, completely prevented loss of soil and increased runoff compared to control treatment. The most important advantage of using polypropylene fibers is to increase the soil's stability and prevent sidewall collapse. After using this combination, the erosion-free soil was exposed to more than six times the maximum rainfall duration (up to three hours), and maintained its stability. It was concluded that due to its low cost and ease-of-use, this technique has a good chance for fixing the slopes of fine-grained soil with steep slopes.

Keywords


  1. بروغنی، م.، س. خ. میرنیا، ج. وهابی، و س. ج. احمدی. 1393. بررسی تأثیر نانوزئولیت در کاهش فرسایش خاک با استفاده از باران ساز FEL3. پژوهشنامه مدیریت حوزه آبخیز. جلد 5، شماره 9، صفحه 95-106.
  2. بروغنی، م. 1389. تأثیر نانوزئولیت در کنترل فرسایش و افزایش نگهداشت آب در خاک، پایان‌نامه کارشناسی ارشد آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، پردیس نور، 50 ص.
  3. جعفری، م، م. طهمورث، و ج. قدوسی. 1390. مبارزه بیولوژیک با فرسایش خاک، انتشارات دانشگاه تهران، 740 ص.
  4. حزباوی، ز.، س. ح. ر. صادقی، و ح. یونسی، 1391. تحلیل و ارزیابی تأثیرپذیری مؤلفه های رواناب از کاربرد سطوح مختلف پلی آکریل آمید. نشریه حفاظت منابع آب و خاک. دوره2، شماره 2، صفحه 1-12.
  5. حمیدی تهرانی، س.، و ع. واعظی، 1392. تأثیر پلی‌وینیل‌استات بر هدایت هیدرولیکی و تولید رواناب و رسوب در یک خاک مارنی. نشریه آب و خاک (علوم و صنایع کشاورزی). دوره27، شماره 4، صفحه 792-801.
  6. زارع خورمیزی، م.، ع. نجفی‌نژاد، ن. نورا، و ع. کاویان، 1392. اثر برخی ویژگی‌های خاک بر تولید رواناب و هدررفت خاک در اراضی کشاورزی حوزه آبخیز چهل چای استان گلستان. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، 17(64): 173-183.
  7. شکفته، ح. (1380). بررسی ماده شیمیایی پلی‌اکریل‌آمید (PAM) بر فرسایش و پایداری خاکدانه‌ها در حالت خشک و مرطوب. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه تهران.
  8. شکفته، ح.، ح. ق. رفاهی، و م. گرجی، 1384. بررسی اثر ماده شیمایی پلی اکریل آمید بر فرسایش و رواناب خاک‌ها، مجله علوم کشاورزی ایران. جلد 36، شماره 1. صفحه 177-186.
  9. شهبازی، ع.، ف. سرمدیان، ح. ق. رفاهی، و م. گرجی، 1384. تأثیر پلی آکریل آمید بر فرسایش و روانآب خاک‌های شور سدیمی، مجله علوم کشاورزی ایران. دوره36، شماره 5، صفحه 11102-1103.
  10. صادقی، س.ح.ر. 1389. مطالعه و اندازه‌گیری فرسایش آبی، انتشارات دانشگاه تربیت مدرس، 200 ص.
  11. عباسی، ک.، م. نیشابوری، ش. اوستان، و ع. احمدی. 1393. اثرات هیدرومالچ و پلی آکریل آمید بر کنترل رواناب، رسوب و اتلاف عناصر K ،P ،N خاک در شرایط آزمایشگاهی. نشریه دانش آب و خاک.  جلد24، شماره 4، صفحه 247-259.
  12. فرزی، غ.، ا. علی آبادی، 1390. گزارش پروژه پایلوت صنعتی تولید هیدروژل پلیمری برای توسعه پوشش گیاهی، جلد دوم و سوم. دانشگاه حکیم سبزواری.
  13. وهابی، ج.، و م. ح. مهدیان، 1388. بررسی تأثیر پارامترهای ادافیکی بر مقدار رواناب با استفاده از شبیه ساز باران. مجله پژوهش و سازندگی. جلد 83، صفحه 10-20. دوره22، شماره 2(پیاپی 83) ، صفحه 10-20.
  14. Adams, J.E. 1966. Influence of mulches on runoff, erosion and soil moisture depletion. Soil Sci. Soc. of America Journal, 30(1) 110-114.
  15. Aghabeigi, A., S.H.R. Moradi, and B. Fattahi. 2014. Sediment and runoff measurement in different rangeland vegetation types using rainfall simulator. Ecopersia, 2(2): 525-538.
  16. Aksoy, H., N. Erden, S. Cokgor, A. Gedikli, J. Yoon, K. Koca, S. Boran, and E. Eris. 2012. A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two-dimensional flume. Catena, 98: 63-72.
  17. Barvenik, F.W. 1994. Polyacrylamide characteristics related to soil applications. Soil Sci., 158: 235–243.
  18. Chaudhari, K. and D.C. Flanagan, 1998. Polyacrylamide effect on sediment yield, runoff, and seedling emergence on a steep slope. Technical papers, American Society of Agricultural Engineers ASAE Annual International Meeting, 20 July 1998.
  19. Soil Survey Staff. 2018. NRCS soils [Online]. Available at http://markazi.areo.ir/ DesktopModules/ News/ News View. Aspx? Tab ID=3793 &Site=markazi.areo&ItemID=52830&mid= 39797 &wVersion= Staging & Lang = fa-IR.
  20. Green, V.S. and D.E. Stott. 2001. Polyacrylamide: a review of the use, effectiveness, and cost of a soil erosion control amendment. 10th International Soil Conservation Meeting, May 24-29, 1999, Purdue University and the USDA-ARS National Soil Erosion Research Laboratory, 384-389.
  21. Gholami L, SHR. Sadeghi, and M. Homaee. 2013. Straw mulching effect on splash erosion, runoff and sediment yield from eroded plots. Soil Sci. Soc. Am J 77:268–278. doi:10.2136/sssaj2012.0271.
  22. Iserloh, T., K. D. Peter, W. Fister, S. Wirtz, V. Butzen, C. Brings, and J. B. Ries, (2015). Rainfall simulation experiments with a small portable rainfall simulator: research on runoff generation and soil erosion. In EGU General Assembly Conference Abstracts (Vol. 17, p. 15608).
  23. Jiang, T., L. Teng, Sh. Wei, L. Deng, Z. Luo, and Y. Chen. 2011. Application of polyacrylamide to reduce phosphorus losses from a Chinese purple soil: a laboratory and field investigation. J. of Env. Man., 91: 1437-1445.
  24. Kavian, A., F. Hayavi and M. Boroghani. 2014. Polyacrylamide effects on splash erosion rate in different soils using rainfall simulator. J. of Range and W. Man., 67(2): 203-216.
  25. Kerr R.A. .2007. Global warming is changing the World. Science J., 316:188–190.
  26. Kukal S.S. and M. Sarkar. 2010. Splash erosion and infiltration in relation to mulching and polyviny alcohol application in semi-arid tropics. Archives of Agronomy & Soil Science, 56(6):697–705.
  27. Kumar, A. and A. Saha. 2011. Effect of polyacrylamide and gypsum on surface runoff, sediment yield and nutrient losses from steep slopes. Agric. W. Man. J., 98: 999–1004.
  28. Lal, R. 1998. Soil erosion impact on agronomic productivity and environment quality. Crit. Rec. Plant Sci., 17:319–464.
  29. Lee S., C.H.Won, M. Shin, W. Park, Y. Choi, J. Shin and J. Choi. 2012. Application of surface cover and soil amendment for reduction of soil erosion from sloping field in Korea. International Conference of Agriculture Engineering, July 8-12, Spain. p. 5.
  30. Lentz, R.D., I. Shainberg, R.E. Sojka and D.L. Carter. 1992. Preventing irrigation furrow erosion with small application of polymers. J. Soil Sci. Soc. of America, 56: 1926-1932.
  31. Levy GJ, J. Levin, M Gal, M. Ben-Hure and I. Shainberg. 1992. Polymers effects on infiltration and soil erosion during consecutive simulated sprinkler irrigation. Soil Sci. Soc. Am. J., 56: 1926-1932.
  32. Malik, M. and J. Letey. 1991. Adsorption of polyacrylamide and polysaccharide polymers on soil materials. J. Soil Sci. Soc. of America, 55: 380–383.
  33. Martinez, M. 1998. Factors influencing surface runoff generation in a Mediterranean semi-arid environment: Chicamp Watershed Spain. Hydr. Proc. 12(5): 741-745. Available at https: //doi.org /10.1002/ (SICI) 1099-1085 (19980430)12:53.0.CO;2-F.
  34. Peterson, J.R., D.C. Flanagan, and J.K. Tishmack. 2002. PAM application method and electrolyte source effects on plot-scale runoff and erosion. Transactions of the ASAE, 45(6): 1859-1867.
  35. Sadeghi, S.H., Z. Hazbavi, and M.K. Harchegani. 2016. Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar. Science of the Total Environment, 541: 483-490.
  36. Sepaskhah A.R. and A.R. Bazrafshan-Jahromi. 2006. Controlling runoff and erosion in slopping land with polyacrylamide under a rainfall simulator. Biosystems Engineering, 93: 469–474.
  37. Sepaskhah, A.R. and V. Shahabizad. 2010. Effects of water quality and PAM application rate on the control of soil erosion, water infiltration and runoff for different soil textures measured in a rainfall simulator. Biosystems Engineering, 106: 513-520.
  38. Seybold, C.A. 1994. Polyacrylamide review: Soil Conditioning and Environmental Fate. Communications in Soil Sci. and Plant Analysis, 25(11-12): 2171-2185.
  39. Shoemaker, A.E. 2009. Evaluation of anionic polyacrylamide as an erosion control measure using intermediate-scale experimental procedures. Auburn University, Master Thesis, USA. 220pp.
  40. Weston, D.D., R.D. Lentz, M.D.Cahn, R.S. Ogle, A.K. Rother, and M.J. Lydy. 2009. Toxicity of anionic polyacrylamide formulations when used for erosion control in agriculture. Technical Reports: Surface Water Quality. J. of Env. Qual., 38: 238–247.
  41. Yu, J., T. Lei, I. Shainberg, A. I. Mamedov, and G. J. Levy. 2003. Infiltration and erosion in soils treated with dry pam and gypsum. J. of Soil Sci. Soc. of America 67:630–636.
  42. Zheng, M. 2011. A technology for enhanced control of erosion, sediment and metal leaching at disturbed land using polyacrylamide and magnetite nanoparticles. A thesis submitted to the graduate faculty of auburn university in partial fulfillment of the requirements for the Degree of Master of Science, Auburn, Alabama August, 104 p.