تعیین مناسب‌ترین درجه وضوح پیکسل و اندازه پنجره مدل رقومی ارتفاع برای تعیین پراکنش مکانی درصد رس خاک

نوع مقاله : مقاله پژوهشی

10.22092/ijsr.2016.106323

چکیده

اگر چه درک بهتر و انتخاب مناسب­تر مقیاس مدل رقومی ارتفاع به بهبود پیش­بینی­های خاک کمک خواهد کرد، اما اثرات تعاملات بین اندازه پیکسل و پنجره به تفصیل بررسی نشده است. در این تحقیق، سعی شده است تا نقش مقیاس مکانی بر روی کارایی پیش­بینی درصد رس خاک از طریق آزمودن تجربی تعاملات بین درجه وضوح پیکسل و اندازه پنجره با استفاده از مدل رگرسیون درختی ارزیابی شد. بدین منظور، در دو منطقه متفاوت از لحاظ ژئومورفولوژی و خاک (منطقه 1، میبد در استان یزد با مساحت 400 کیلومتر مربع و منطقه 2، یاسوکند در استان کردستان با مساحت 400 کیلومتر مربع) 120 نمونه خاک سطحی (30-0 سانتی­متری) نمونه­برداری و درصد رس خاک آن­ها اندازه­گیری شد. از 121 مدل رقومی ارتفاع با مقیاس­های متفاوت، 22 خصوصیت ژئومورفومتری استخراج و جهت پیش­بینی درصد رس خاک استفاده شدند. نتایج نشان داد منطقه میبد دارای حداقل میانگین ریشه مربعات خطا (0/9)، حداکثر ضریب تبیین (47/0) بوده و وابستگی مدل درختی جهت پیش­بینی درصد رس خاک به ابعاد پیکسل بیشتر می­باشد[H1] ، ولی منطقه یاسوکند دارای کمترین ریشه مربعات خطا (65/5)، بیشترین ضریب تبیین (77/0) و وابستگی مدل درختی جهت پیش­بینی درصد رس خاک به ابعاد پنجره بیشتر می­باشد.



 [H1]لطفا کنترل شود.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of the Best Pixel Resolution and Window Size of DEM for Digital Mapping of Soil Clay Content

چکیده [English]

Although a better understanding and quantitative knowledge of digital elevation model scale will help to improve soil predictions, the influence of pixel size has not been investigated in detail. The aim of this study was to investigate the role of spatial scale on soil clay content prediction by empirically testing the interaction between pixel resolution and window size with regression tree model. In two different areas in terms of their geomorphology and soil (area 1, Maybod located in Yazd province covered 400 km2; area 2, Iasokand located in Kurdistan province covered 400km2), 120 surface soil samples (0-30 cm) were taken and their clay contents were measured. From 121 digital elevation models representing different scales, 22 attribute were extracted and used for soil clay content prediction. Results showed that Maybod area had the minimum RMSE (9.0%) and maximum R2 (0.47) and dependence of tree model on pixel size was significant for clay prediction[H1] ; however, in Iasokand area, the minimum RMSE (5.65%) and maximum R2 (0.77) were obtained and window size was significant for clay prediction.



 [H1]از چکیده فارسی مطلب این گونه ترجمه شده. لطفا کنترل شود.

کلیدواژه‌ها [English]

  • Regression tree
  • Wrapper algorithm
  • Geomorphometry
  1. Addiscott, T.M. 1998. Modeling concepts and their relation to the scale of the problem. Nutrient Cycling in Agroecosystems. Nutrient Cycling in Agroecosystems. 50: 239-245.
  2. Atkinson, P.M., and Tate, N.J. 2000. Spatial scale problems and geostatistical solutions: a review. The Professional Geographer. 52: 607-623.
  3. Behrens, T., Zhu, A., Schmidt, K., and Scholten, T. 2010. Multi-scale digital terrain analysis and features selection for digital soil mapping. Geoderma. 155: 175-185.
  4. Cavazzi, S., Corstanje, R., Mayr, T., Hannam, J., and Fealy, R. 2013. Are fine resoulation digital models always the best choice in digital soil mapping?. Geoderma. 195: 111-121.
  5. Corstanje, R., Kirk, G.J.D., and Lark, R.M. 2010. The behaviour of soil process models of ammonia volatilization at contrasting spatial scales. European Journal of Soil Science. 59: 1271-1283.
  6. Florinsky, I.V., and Kuryakova, G.A. 2000. Determination of grid size for digital terrain modeling in landscape investigations-exemplified by soil moisture distribution at a micro-scale. International Journal of Geographical Information Science. 14: 815-832.

 

 

  1. Florinsky, I.V., Eilers, R.G., Manning, G.R., and Fuller, L.G. 2002. Prediction of soil properties by digital terrain modelling. Environmental Modelling & Software. 17: 295-311.
  2. Gallant, J.C., and Hutchinson, M.F. 1997. Scale dependence in terrain analysis. Mathematics and Computers in Simulation. 43: 313-321.
  3. Gee, G. W. and Bauder, J. W. 1986. Particle size analysis. p. 383-411. In: A. Klute. (ed), Methods of Soil Analysis. Part 1, American Society of Agronomy Madison, WI.
  4. Grinand, C., Arrouays, D., Laroche, B., and Martin, M.P. 2008. Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context. Geoderma. 143: 180- 190.
  5. Gruijter, J.J., McBratney, A.B., Minasny, B., Wheeler, I., Malone, B.P., and Stockmann, U. 2016. Farm-scale soil carbon auditing. Geoderma. 265: 120- 130.
  6. Heung, B., Ho, C.H., Zhang, J., Knudby, A., Bulmer, C.E., and Schmidt, M. 2016. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma. 265: 62- 77.
  7. Hudson, B.D. 1992. The soil survey as paradigm-based science. Soil Science Society of America Journal. 56: 836-841.
  8. Marceau, D.J., and Hay, G.J. 1999. Remote sensing contributions to the scale issue. Canadian Journal of Remote Sensing. 25. 357-366.
  9. McBratney, A.B., Santos, M.L.M., and Minasny, B. 2003. On digital soil mapping. Geoderma. 117: 3-52.
  10. Malone, B.P., McBratney A.B., Minasny, B., and Laslett, G.M. 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma. 154: 138-152.
  11. Malone, B.P., McBratney, A.B., and Minasny, B. 2011. Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma. 160: 614-626.
  12. Minasny, B., McBratney, A.B., and Salvador-Blanes, S. 2008. Quantitative models for pedogenesis — a review. Geoderma. 144: 140-157.
  13. Mitchell, T.M. 1997. Machine Learning. Springer.
  14. Quinlan, J.R. 2001. Cubist: An Informal Tutorial. http://www.rulequest.com.
  15. Pain, C.F. 2005. Size does matter: relationships between image pixel size and landscape process scales. MODSIM 2005 International Congress on Modeling and Simulation. 1430-1436.
  16. Roecker, S.M., and Thompson, J.A. 2008. Scale Effects on Terrain Attribute Calculation and Their Use as Environmental Covariates for Digital Soil Mapping. Proceedings of the 3rd Global Workshop on Digital Soil Mapping, Logan.
  17. Smith, M.P., Zhu, A., Burt, J.E., and Stiles, C. 2008. The effects of DEM resolution and neighborhood size on digital soil survey. Geoderma. 137: 58- 69.
  18. Thompson, A.J., Bell, J.C., and Butler, C.A. 2001. Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma. 100: 67– 89.