اثر ورمی‌کمپوست دامی و زباله شهری بر تغییرات فسفر از منابع مختلف در یک خاک آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه خاکشناسی دانشگاه ملایر

2 دانش‌آموخته کارشناسی ارشد خاکشناسی دانشگاه ملایر

3 استادیار گروه خاکشناسی دانشگاه بوعلی سینا همدان

چکیده

بررسی فراهمی فسفر در طول زمان و نقش مواد آلی در فراهمی آن در خاک، برای مدیریت مصرف کودهای شیمیایی و آلی حاوی فسفر مهم می­باشد. این مطالعه با هدف بررسی تأثیر دو نوع ورمی­کمپوست (ورمی­کمپوست دامی (SMV) و ورمی­کمپوست زباله شهری (MWV)) بر فراهمی فسفر، جزء­بندی و گونه­های معدنی آن در یک خاک لوم شنی آهکی تیمار شده با مقادیر 0 و 20 کیلوگرم فسفر بر هکتار، از سه منبع کودشیمیایی (خاک فسفات (RP)، دی­آمونیوم فسفات (DAP) وسوپرفسفات تریپل (TSP)) در طول 90 روز انکوباسیون انجام شد. به منظور مطالعه سرعت کاهش فراهمی فسفر در طی زمان، داده­های فسفر آزاد شده از خاک­ها بر معادله توانی برازش داده شدند. شاخص اشباع و گونه­های فسفر معدنی محلول در روز اول و نودم از انکوباسیون، به کمک برنامه گونه­بندی ژئوشیمیایی MINTEQ به­دست آمد. در روز نودم بین مقدار فسفر فراهم آزاد شده از خاک حاوی سوپرفسفات تریپل تیمار شده با ورمی­کمپوست زباله شهری و در خاک حاوی دی­آمونیوم فسفات تیمار شده با هر دو نوع ورمی­کمپوست، تفاوت معنا­داری (05/0p ) با مقدار فسفر فراهم آزاد شده در خاک شاهد مشاهده شد. در بقیه تیمارها تفاوت معناداری مشاهده نشد، که نشان دهنده پتانسیل بالای تثبیت فسفر در خاک مورد مطالعه می­باشد. سرعت تغییر شکل فسفر (ضریبb  در معادله توانی)، در دامنه 059/0- میلی­گرم بر کیلوگرم در روز )خاک تیمار شده با ورمی­کمپوست دامی( تا 140/0 - میلی­گرم بر کیلوگرم در روز )خاک دارای کود سوپرفسفات تریپل( به­دست آمد. بالاترین مقدار پارامتر a معادله توانی، در خاک­های حاوی دی آمونیوم فسفات و سوپرفسفات تریپل تیمار شده با ورمی­کمپوست زباله شهری مشاهده شد. نتایج این تحقیق نشان داد، کاربرد هر دو نوع ورمی­کمپوست همراه با هر سه نوع کود شیمیایی فسفره، در مقایسه با کاربرد کود­های شیمیایی به تنهایی، باعث کندتر شدن سرعت کاهش فراهمی فسفر در خاک می­شود. فراهمی فسفر در خاک­های تیمار شده با ورمی­کمپوست زباله شهری نسبت به خاک­های تیمار شده با ورمی­کمپوست دامی بیشتر بود. نتایج جزء­بندی نشان داد که جزء­پیوندی با کربنات کلسیم و جزء باقیمانده به­ترتیب در روز اول و نودم انکوباسیون، جزء های غالب فسفر می­باشند و انحلال کانی آپاتیت رهاسازی فسفر را کنترل می­کند. یون-HPO42 گونه معدنی غالب فسفر در خاک­های مورد مطالعه در طول دوره انکوباسیون به­دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Sheep Manure and Municipal Waste Vermicomposts on Changes in Phosphorus from Different Sources in a Calcareous Soil

نویسندگان [English]

  • M. Zarrabi 1
  • M. Asariha 2
  • Z. Kolahchi 3
1 Assistant Professor., Malayer University
2 Former MS student, Malayer University
3 Assistant Professor., Bu-Ali Sina University
چکیده [English]

The effect of organic amendments on phosphorus (P) availability over time is important for developing P fertilizer and organic amendment management practices in soils. This study was conducted to determine the effect of two types of vermicompost, namely, sheep manure (SMV) and municipal waste (MWV), on P availability, its mineral species and fractions in a calcareous sandy loam soil treated with three kinds of phosphorus fertilizer (rock phosphate (RP), diammonium phosphate (DAP), and triple super phosphate (TSP) during 90 days. Available P data during the incubation period were fitted using the power function equation to describe P transformation rate. The geochemical visual MINTEQ was used to calculate saturation indices and mineral P species in solution at the first and last days (nineteenth day) of incubation. By the end of the incubation period, there was no significant difference (P 15≤">  0.05) between the amounts of available P released in the treated and the control soils, except in soils containing TSP treated with MWV and soils containing DAP treated with SMV and MWV. These results suggest high P fixation capacity in studied soil. Phosphorus transformation rate (the b constant of power function equation) ranged from -0.059 mg kg -1 day -1 (soil treated with SMV) to -0.140 mg kg -1 day -1 (soil treated with TSP). The highest “a” constant of power function was observed in soils treated with TSP and DAP and MWV. As compared to application of phosphorus fertilizer alone, vermicomposts applications with P fertilizer decreased P transformation rate in soils. Available P in soils treated with VWM was higher than with VSH. Phosphorus fractionation at the first and nineteenth day of incubation showed that carbonate and residual fractions were the dominant fractions, respectively. The results showed that P release was controlled by the dissolution rate of hydroxylapatite, and HPO4-2 was the dominant P specie during the incubation.

کلیدواژه‌ها [English]

  • Available P
  • Organic fertilizer
  • Fractionation
  • Speciation
  1. توفیقی،ح.، و شیرمردی، م. 1394. اثرکربنات کلسیم و pH برسینتیک تثبیت فسفر در خاک­های مختلف. مجله تحقیقات آب و خاک ایران. دوره 46. شماره 4.
  2. حلاج­نیا، الف.، حق­نیا، غ.، فتوت، الف.، و خراسانی، ر. 1385. تأثیر ماده آلی بر فراهمی فسفر در خاک­های آهکی. مجله علوم و فنون کشاورزی و منابع طبیعی. سال دهم، شماره 4 (الف)، 121-131.
  3. خادم، الف­.، گلچین، الف.، و زارع، الف. 1390. تأثیرنوع ومقدارماده آلی و سطوح مختلف گوگرد برمیزان فسفر و عناصرکم مصرف قابل جذب یک خاک آهکی، دوازدهمین کنگره علوم خاک ایران­.
  4. خسروی، ن. 1394. پایان نامه. ارزیابی کیفی اراضی به روش پارامتریک برای کشت بادام دیم و انگور آبی و با استفاده از نرم افزار میکرولیز (مطالعه موردی : منطقه ازندریان، شهرستان ملایر). دانشگاه ملایر.
  5. شیرمردی، م.، توفیقی، ح. 1394. اثر ماده آلی بر سینتیک تثبیت فسفر در چند خاک مختلف. مجله تحقیقات آب و خاک ایران. دوره 46. شماره 3.
  6. فتحی گردلیدانی، الف.، میرسید حسینی، ح.، فرحبخش، م. 1394. برخی آثار کمپوست قارچ مصرفی و بیوچار باگاس بر فعالیت فسفاتاز قلیایی و فراهمی فسفر در چند خاک آهکی. مجله تحقیقات آب و خاک ایران. دوره 46. شماره 4.
  7. فتحی گردلیدانی، الف.، میرسید حسینی، ح.، فرحبخش، م. 1395.  تأثیر کمپوست قارچ مصرفی و بیوچار باگاس نیشکر بر قابلیت استفاده و جزءبندی فسفر معدنی در یک خاک آهکی. مهندسی زراعی (مجله علمی کشاورزی). جلد 39. شماره یک.
  8. کلاهچی، ز. 1390. اندازه­گیری و پیشگویی اصلاح کننده­های آلی و معدنی بر حرکت فسفر در خاک­های آهکی. پایان نامه دکتری خاکشناسی دانشکده کشاورزی، دانشگاه بوعلی سینا. 
  9. ملکوتی، م.ج.، ­کشاورز، پ.، و کریمیان، ن. 1373. روش جامع تشخیص و توصیه بهینه کود برای کشاورزی پایدار. چاپ سوم. انتشارات دانشگاه تربیت مدرس.
  10. Afif, E., Matar, A., and Torrent, J. 1993. Availability of phosphate applied to calcareous soils of West Asia and North Africa. Soil Sci. Soc. Am. J. 57: 756–760.
  11. Alder P.R., and Sikora L.J. 2003. Changes in soil phosphorus availability with poultry compostage. Commun. Soil. Sci. Plant Anal. 34 :81-95.
  12. Allison, L.E., and C.D. Moodi.1962. Carbonates. PP 1379-1396. In: C. A. Black et al. (ed), Methods of Soil Analysis. Part 2, American, Society of Agronomy, Madison, WI.
  13. Al-Rohily,K.M., Ghoneim,A.M., Modaihsh,A.S., and Mahjoub, M.O. 2013. Phosphorus availability in calcareous soil amend with chemical phosphorous fertilizer,cattle manure,compost and sludge manure.Soil Science Department, King Saud Uneversity,ISSN. 1818-4978,PP:17-24.
  14. Ann, Y., Reddy, K.R., and Delfino, J.J. 2000. Influence of chemical amendments on phosphorus immobilization in soils from a constructed wetland. Ecological Engineering. 157–167.
  15. Atiyeh, R.M., Lee, S., Edwards, C.A., Arancon, N.Q., and Metzger, J.D. 2002.The influence of humic acids derived from earthworm-processed organic wastes on plant growth.Bioresour. Technol. 84, 7–14.
  16. Barber, S. A. 1984. Soil Nutrient Bioavailability. I. A Mechanistic Approach. Wiley, New York.
  17. Bowyoucos, G.J. 1962. Hydrometer method improved for making partical size analysis of soils. Agron. J. 56, 464-465.
  18. Carreira, J.A., Vinegla, B., and Lajtha, K. 2006. Secondary CaCO3 and precipitation of P-Ca compounds control the retention of soil P in arid ecosystem. J. Arid Environ. 64,460–473.
  19. Chen, Y. R., Butler, J. N., and Stumm, W. 1973. Kinetic study of phosphate reaction with aluminum oxide and kaolinite. Environmental Science Technology, 7, 327-332.
  20. Delgado, A., Madrid ,A., Kassem, S., Andreu, L., and Campillo, M.C. 2002.Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. PlantSoil. 245:277–286.
  21. Epstein, E. 1997. The science of composting. Technomic Publishing Co. Inc., Lancaster,Pennsylvania.17604, USA.
  22. Gagnon, B., and Simard, R.R. 1999. Nitrogen and phosphorus release from on farm and industrial composts. Can. J.Soil Sci. 79, 481–489.
  23. Guertal, E. A., Eckret, D. J., Traina, S. J., and Logan, T. J. 1991. Differential phosphorus retention in soil profiles under no-till crop production. Soil Sci. Soc. Am. J. 55, 410–413.
  24. Halajnia, A., Haghnia, G.H., Fotovat, A., and Khorasani, R. 2009. Phosphorus fractions in calcareous soilsamended with P Harrell, D.L., and Wang, J.J. 2006. Fractionation and sorption of inorganic phosphorus in Louisiana calcareous soils. J. Soil Sci. 171, 39–51.
  25. Havlin, J.L., Beaton, J.D., Tisdale, S.L. and Nelson, W.L. 1999. Soil Fertility and Fertilizers: An Introduction to Nutrient management. Prentice Hall. PP. 499.
  26. Heckrath, G., Brooks, P. C., Poulton, P. R., Goulding, K. W. T. (1995): Phosphorous leaching from soils containing different P concentrations in the Broadbalk experiment. J. Environ. Qual. 24, 904–910.
  27. Hedley, M.J., Stewart, J.W.B., and Chauhan, B.C. 1982a. Changes in inorganic and organic soilphosphorus fractions induce by cultivation practices and by laboratory incubation. Soil Sci. Soc. Am. J.46, 970–976.
  28. Hedley, M.J., White, R.E., and Nye P.H. 1982b. Plant-induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. III. Changes in L value, soil phosphate fractions and phosphatase activity. New Phytol.  91, 45–56.
  29. Hosseinpur, A. R., Kiani, S., and Halvaei, M. 2012. Impact of municipal compost on soil phosphorus availability and mineral phosphorus fractions in some calcareous soils. Environ Earth Sci. 67(1), 91-96.
  30. Ibrahim, H. S. and Pratt, P. F. 1982. Effects of Rate of Application and Time on Phosphorus Sorption by Soils. Soil Science Society of America Journal, 46, 926-928.
  31. Jalali, M., and Ranjbar, F. 2010. Aging effects on phosphorus transformation rate and fractionation in some calcareous soils. Geoderma.  155, 101-106.
  32. Jalali. M. 2009. Phosphorus availability as influenced by organic residues in five calcareous soils. Compost Sci Util. 4 (17), 241-246.
  33. Leytem, A.B., and Westermann, D.T.2003. Phosphate sorption by Pacific Northwest calcareous soils. J. Soil Sci. 168, 368–375.
  34. Mackay, A. D., and Syers, J. K. 1986. Effect of phosphate, calcium and pH on the dissolution of a phosphate rock in soil. Fert. Res. 10, 175- 184.
  35. McDowell, R.W., and Sharpley, A.N. 2003.Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma. 112, 143-154.
  36. Mehra, O. P., and Jackson, M. L. 1960. Iron oxide removal from soils and clays by dithionite-citrate systems buffered with sodium bicarbonate. Clay Clay Miner. 7, 317–327.
  37. Mkhabela, M.S., and Warman, P.R. 2005.The influence of municiple solid waste compost on yield, soil phosphorus availability and uptake by two vegetable crops grown in a Pugwash sandy loam soil in Nova Scotia.Agric.Ecosyst.Environ. 106:57-67.
  38. Motavalli, P.P., and Miles, R.J. 2002. Soil phosphorus fractions after 111 years of animal manure and fertilizer applications. Biol Fertil Soils. 36, 35–42.
  39. Murphy, J., and  Riley, H.P. (1962). A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta. 27, 31-36.
  40. Olsen S.R.and Sommer L.E.1982. Phosphorus. In: Klute, A. (Ed), Methods of Soil Analysis: Physical Properties, Part 1, second ed. Agron Monogr, No 9. Madison WI: ASA and SSSA‌. pp: 403–430.
  41. Olsen, S.R. and Watanabe, F.S. 1966. Effective volume of soil around plant roots determined from phosphorus diffusion. Soil Sci. Soc. Am. Proc. 30 ,598- 602
  42. Oustan, Sh. and Towfighi, H. 2003. Prediction of Residual Available Phosphorus in Some Soils of Iran. Iranian Journal of Agricultural Sciences, 35, 531-540.
  43. Parthasarathi, K. 2007.Influence of moisture on the activity of  perionix  excavates (perrier) and microbial - nutrient dynamics of pressmud vermicompost. Division of vermi biotechnology, Department of Zoology, Annamalainagar University,Annamalainagar 608002,India.
  44. Pramanika, P., Bhattacharya, S., and Banik, P. 2009. Phosphorous solubilization from rock phosphate in presence of vermicomposts in Aqualfs. Geoderma. 152: 16–22.
  45. Reddy,  D.D., Subba Rao., A­., Sammi Reddy,  K­., and Takkar, P.N. 1999. Yield sustainability andphosphorus utilization insoybean–wheat system on Vertisols in response tointegrated use of manure and fertilizer phosphorus. Field Crops Residue. 62: 181–190.
  46. Rhoades, J.D. 1968.Cation exchang capacity. pp. 149-158. In: A.C. page (Ed.), Methods of Soil Analysis. Part 2, Monograph No 9 .American, Society of Agronomy.
  47. Rowell, D.L. 1994.Soil Science: methods and application.Longman. London.
  48. Ryan, J., Hasan, H.M., Baasiri, M., and Tabbara, H.S. 1985. Availability and transformation ofapplied phosphorus in calcareous Lebanese soils. Soil Sci Soc. Am. J.  49, 1215–1220.
  49. Sagoe, C.I., Ando, T., Kouno, K­., and Nagaoka, T. 1998.Effects of organic acid treatment of phosphate rocks on the phosphorus availability to Italian ryegrass. Soil Sci. PlantNutr­. 43: 1067–1072.
  50. Shariatmadari, H., Shirvani, M. and Jafari, A. 2006. Phosphorus release kinetics and availability in calcareous soils of selected arid and semiarid toposequence. Geoderma. 132, 261-272.
  51. Sparks, D.L. 1995. Environmental Soil Chemistry. Harcourt Brace and Company, San Diego, CA. Broadbalk experiment. J. Environ. Qual. 24, 904–910.
  52. Toor, G.S., and Bahl, G.S. 1997. Effect of solitary and integrated use of  poultry manure and fertilizer phosphorus on the dynamics of P availability in different soils.Bioresour. Technol. 62:25-28.
  53. Yu, S., He, Z.L., Stoffella, P.J., Clavert, D.V., Yang, X.E., Banks, D.J. and Baligan, V.C. 2006.Surface runoff phosphorus (P) loss in relation to phosphates activity and soil P fractions in Florida sandy soils under citrus production. Soil Biol. Biochem. 38, 619-628.