مطالعه جذب و واجذب فسفردر لایه های سطحی و زیر‌سطحی خاک برخی از تاکستان‌های شهرستان ملایر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه خاکشناسی دانشگاه ملایر

2 دانش‌آموخته کارشناسی ارشد خاکشناسی دانشگاه ملایر

3 استادیار گروه خاکشناسی دانشگاه بوعلی سینا همدان

چکیده

فراهمی فسفر در خاک­ها تحت تأثیر ویژگی­های جذب فسفر می­باشد. هدف از این تحقیق، بررسی پارامترهای هم­دمای جذب سطحی، نیاز استاندارد (SPR)، ظرفیت بافری (PBC)، واجذب و شاخص پسماند فسفر (PHI) در خاک­های سطحی و زیرسطحی بود. مطالعات هم­دمای جذب و واجذب فسفر، در 10 خاک ­سطحی (30-0 سانتی­متر) و زیر­سطحی (60-30 سانتی­متر) از تاکستان­های شهرستان ملایر انجام شد. مطالعات هم­دما­ی جذب سطحی، با سری­های غلظت فسفر از صفر تا 200 میلی­گرم در لیتر، در حضور کلرید کلسیم 01/0 مولار انجام شد. برای مطالعه واجذب فسفر، از محلول کلرید کلسیم 01/0 مولار استفاده شد. ویژگی­های جذب فسفر در خاک­ها به کمک معادلات هم­دمای جذب تعیین شدند. میانگین غلظت فسفر اولسن در خاک­های سطحی و زیرسطحی به ترتیب، 3/24 و 4/19 میلی­گرم بر کیلو­گرم به­دست آمد. در خاک­های سطحی و زیر سطحی، غلظت فسفر اولسن بالا­تر از حد مطلوب فسفر،  برای محصولات باغی (7 تا 10 میلی­گرم بر کیلو­گرم) به­دست آمد. معادلات فروندلیچ، ون­های و تمکین بخوبی توانستند جذب سطحی فسفر را توصیف نمایند. میانگین نیاز استاندارد فسفر محاسبه شده از معادله فروندلیچ در غلظت 3/0 میلی­گرم بر لیتر، در خاک­های سطحی و زیر­سطحی به ترتیب 7/18 و 7/19میلی­گرم بر کیلو­گرم و میانگین ظرفیت بافری فسفر حاصل از معادله ون­های، به ترتیب 2/89 و 5/103 لیتر بر کیلو­گرم به­دست آمد. میانگین شاخص پس­ماند فسفر در خاک­های سطحی (7/1) بیشتر از خاک­های زیر­سطحی (6/1) بود. بین SPR با مقدار فسفر اولسن در خاک­های سطحی (01/0p ) و زیرسطحی (05/0p ) همبستگی معنا­دار و منفی به­دست آمد. PBC در خاک­های سطحی با مقدار رس (01/0p ) و درصد کربنات کلسیم (05/0p ) نیز همبستگی معنا­دار مثبت داشت. با توجه به بالا بودن غلظت فسفر محلول در هر دو عمق احتمال ایجاد اختلال در جذب سایر عناصر غذایی وجود دارد. مدیریت مصرف کودهای فسفری بر اساس پارامترهای به­دست آمده از مطالعات هم­دمای جذب در این خاک­ها ضروری می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Phosphorus Sorption and Desorption Characteristics of Some Surface and Subsurface Vineyard Soils of Malayer Area in Hamedan Province

نویسندگان [English]

  • M. Zarrabi 1
  • F. Bagvand 2
  • S. Mahdavi 1
  • Z. Kolahchi 3
1 Assistant Professor., Malayer University
2 Former MS student, Malayer University
3 Assistant Professor., Bu-Ali Sina University
چکیده [English]

Phosphorus (P) sorption characteristics of soils influence P availability. This study was conducted to investigate P sorption isotherm, standard P requirement (SPR), P buffering capacity (PBC), desorption, and P hysteresis index (PHI) by 10 surface (0-30 cm) and 10 subsurface (30-60 cm) soils in vineyard soils of Malayer area in Hamadan province. Isotherm experiment was carried out by concentrations of P ranging from 0 to 200 mg l-1 of KH2PO4 salt in the presence of 0.01 M CaCl2. Desorption experiments were conducted with 0.01 M CaCl2. Phosphorus sorption characteristics in soil were calculated from isotherm equations. The average values of Olsen’s extractable P (Olsen P) in surface and subsurface soils were 24.3 and 19.4 mg kg–1, respectively. In surface and subsurface soils, Olsen P was higher than the optimum concentration of P for most crops (7-10 mg P kg–1). Phosphorus sorption curves were well fitted to the Freundlich, Van-Hay and Temkin equations. The SPR average of surface and subsurface soils, defined as the amount of P sorbed at an equilibrium concentration of 0.3 mgP l–1 was 18.7 mg kg-1 and 19.7 mg kg-1, respectively. The PBC average of surface and subsurface soils, account from Van-Hay equation was 89.2  l kg-1 and 103.5  l kg-1, respectively. The average value of PHI in surface soils (1.7) was greater than subsurface soils (1.6). There was significant negative correlation between SPR with Olsen-P in surface (p 15≤"> 0.01) and subsurface (p 15≤"> 0.05) soils. We found significant positive correlation between PBC with clay (p 15≤"> 0.01) and ECC (p 15≤"> 0.05) of soils. Our finding showed that high level of Olsen P concentration in surface and subsurface soils may decrease the availability of other nutrients.Appropriate P fertilizer management according to isotherm finding is needed. 

کلیدواژه‌ها [English]

  • Phosphorous sorption isotherm
  • buffering capacity
  • Standard requirement
  • Hysteresis
  1. احمدی، ک. قلیزاده، ح. عبادزاده، ح.ر. حسینپور، ر. حاتمی، ف. عبدشاه، ه. رضایی، م.م. کاظمیفرد، ر. فضلی استبرق، م. 1394.  آمار نامه کشاورزی سال 1393، جلد سوم: محصولات باغی. انتشارات وزارت جهادکشاورزی. معاونت برنامه ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات. 147 صفحه.
  2. جعفری، الف. شریعتمداری، ح. حجازی مهریزی، م. 1394. تعیین شاخص­های بافری و نیاز استاندارد فسفر در چهار ردیف اراضی مناطق خشک و نیمه خشک با استفاده از هم­دماهای جذب سطحی (مطالعه موردی: اصفهان و شهرکرد). نشریه پژوهش­های حفاظت آب و خاک. جلد 22، شماره 3، صفحه 103-89.
  3. شهبازی، ک. و داودی، م.ح. 1391. ارزیابی نیازفسفرگندم درخاک­های آهکی با استفاده از هم­دما­های جذب فسفر. مجله پژوهش­های خاک (علوم خاک و آب). جلد 26، شماره 1، صفحه 17-1.
  4. شیروانی، م. شریعتمداری، ح. 1381. استفاده از هم­دما­های جذب سطحی در تعیین شاخص­های ظرفیت بافری و نیاز استاندارد فسفر برخی خاک­های آهکی استان اصفهان. مجله علوم و فنون کشاورزی و منابع طبیعی. جلد 6، شماره1، صفحه 129-121.
  5. محمودسلطانی، ش. صمدی، ع. 1382. شکل­های مختلف فسفر در برخی خاک­های آهکی استان فارس و روابط آن­ها با ویژگی­های فیزیکوشیمیایی خاک. مجله علوم و فنون کشاورزی و منابع طبیعی. جلد 7، شماره 3،  صفحه 128- 119.
  6. مظاهری، د.مجنون حسینی، ن. 1385. مبانی زراعت عمومی.انتشارات دانشگاه تهران.ا412 صفحه.
  7. ملکوتی، م.ج. کشاورز، پ. کریمیان، ن. 1387. روش جامع تشخیص و توصیه بهینه کود برای کشاورزی پایدار. چاپ هفتم با بازنگری کامل. انتشارات دانشگاه تربیت مدرس. 755 صفحه.
  8. ملکوتی، م.ج. مشیری، ف. غیبی، م.ن. مولوی، ص. 1384. حد مطلوب غلظت عناصر غذایی در خاک و برخیازمحصولاتزراعیوباغی. انتشارات سازمان تحقیقات، آموزش و ترویج کشاورزی، موسسه تحقیقات خاک و آب.  نشریه فنی شماره 406، 21 صفحه.
  9. ملکوتی، م.ج. همایی، م. 1383. حاصلخیزی خاک­های مناطق خشک (مشکلات و راه حل­ها). چاپ دوم با بازنگری کامل. انتشارات دانشگاه تربیت مدرس. 600 صفحه.
  10. Abekoe, M.K.,andK.L.Sahrawat. 2001. Phosphate retension andextractability in soils of the humid zone in West Africa.Geoderma. 102:175–187.
  11. Acanda, Y., M.J.Prado, M.V.González, andM. Rey. 2013. Somatic embryogenesis from stamen filaments in grapevine (Vitis vinifera L. cv. Mencía): changes in ploidy level and nuclear DNA content. In Vitro Cellular and Developmental Biology-Plant.1-9.
  12. Ahmed, M.F., I.R.Kennedy, A.T. Choudhury,M.A.M.L.Kecske´s, and R.Deaker. 2008. Phosphorus adsorption in some Australian soils and influence of bacteria on the desorption of phosphorus. Communications in Soil Science and Plant Analysis. 39: 1269–1294.
  13. Allison, L.E., and C.D. Moodi.1962. Carbonates. PP 1379-1396. In: C. A. Black et al. (ed), Methods of Soil Analysis. Part 2, American, Society of Agronomy, Madison,WI.
  14. Barros, N.F., Filho., N.B. Comerford., and N.F. Barros. 2005. Phosphorus sorption, desorption and resorption by soils of the Brazilian Cerrado supporting eucalypt. Biomass and Bioenergy. 28: 229-236.
  15. Barrow, N.J. 1978. The description of phosphate adsorption curves. Journal of Soil Science. 29: 447-462.
  16. Bertrand, I., R.E.Holloway,R.D. Armstrong,and M.J.McLaughlin.2003. Chemical characteristics of phosphorus in alkalinesoils from southern Australia. Australian Journal of Soil Research. 41:61–76.
  17. Bohn, H.L., McNeal, B.L., and O,Connor. 1979. Soil Chemistry. John Wiley and Sons.
  18. Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Journal of Agronomy. 54: 464-465.
  19. Carreira, J.A., B.Vinegla., and K. Lajtha.2006. Secondary CaCO3 and precipitation of P–Ca compounds control the retention of soil P in arid ecosystems. Arid Environmental. 64: 460–473.
  20. Fink, J.R., A.V. Inda., J. Bavaresco., V. Barron., J. Torrent., and C. Bayer. 2016. Adsorption and desorption of phosphorus in subtropical soils as affected by management system and mineralogy. Soil and Tillage Research. 155: 62-68.
  21. Food, and Agriculture Organization, faostat, retrieved may 1. 2012. fromhttp://faostat. fao.org/site./626/ default.//626/ aspx#ancor.
  22. Fox, R.L., and E.J.Kamprath. 1970. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Journal of Soil Science Society of American Proceeding. 34: 902–907.
  23. Ghafoor, A., R.Mam.and S.S. Kamil. 2014. Phosphorus Sorption in Some Great Soil Groups of Iraqi Kurdistan Region. Journal of Zankoy Sulaimani- Part A, Special Issue, Vol. 16.
  24. Hadgu, F., H.Gebrekidan, K. Kibret,and B.Yitaferu. 2014. Study of phosphorus adsorption and its relationship with soil properties, analyzed with Langmuir and Freundlich models. Agriculture, Forestry and Fisheries. 3: 40-51.
  25. Holford, I.C.R. 1979. Evaluation of soil phosphorus buffering indices. Australian Journal of Soil Research. 17: 495-54.
  26. Jalali, M. 2006. Soil phosphorus buffer coefficient as influencedby time and rate of P addition. Archive of Agronomy and Soil Science.
  27. Jalali, M. 2007. Phosphorus status and sorption characteristics of some calcareous soils of Hamadan, western Iran.Environmental Geology. 53: 365-374.
  28. Jalali, M., and E. Naderi Peikam. 2013. Phosphorus sorption-desorption behavior of river bed sediments in the Abshineh river, Hamedan, Iran, related to their composition. Environmental Monitoring and Assesment. 185: 537-552.
  29. Kolahch, Z. and  M. Jalali. 2013. Phosphorus movment and retention by two calcareous soils. Soil and Sediment Contamination: An International Journal. 22(1), 21-38.
  30. Ma, L., R. Xu. and J. Jiang. 2010. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China. Journal of Environment and Science. 22: 689–695.
  31. Mashal, K., M. Al-Qinna, and J.Ibbini. 2011. Phosphorus-Sorption Characteristics of Calcareous Soils in Arid and Semi Arid Regions.Journal of Sustainable Water and Environmental Systems. 3 (1): 53-58.
  32. McCollum, R.E. 1991. Build up and decline in soil phosphorus: 30-year trends on a typic umprabuult. Agronomy Journal. 83:77–85.
  33. Mehadi, A.A., R.W. Taylor, and J.W.Shuford. 1990. Prediction of fertilizer phosphate requirement using the Langmuir adsorption maximum. Plant and Soil. 122(2): 267-270.
  34. Moazed, H., Y.Hoseini, A. Naseri, and F.Abbasi. 2010. Determining phosphorus adsorption isotherm in soil and its relation to soil characteristics. Journal of Food, Agriculture and Environment. 8 (2):1153 - 1157.
  35. Moshi, A.O., A. Wild., and D.J. Greenland. 1974. Effect of organic matter on the charge phosphate adsorption characteristics of Kikuyu red clay from Kenya. Geoderma. 11:275-285.
  36. Murphy, J., and J.P.Riley. 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta. 27:31-36.
  37. Oliveira, C.M.B., L.C.Gatiboni, D.J. Miquelluti, T.J.Smyth., and J.A. Almeida.2014. Capacidade máxima de adsorção de fósforo e constante de energia de ligação em Latossolo Bruno em razão de diferentes ajustes do modelo de Langmuir. RevistaBrasileira de Ciencia do Solo. 38: 1805–1815.
  38. Olsen, S.R., and F.S. Watanabe.1965. Test of an ascorbic acid method for determining phosphorous I water and NaHCO3 extracts from soil. In method of soil analysis: chemical and microbiological properties, part 1 2nd ed. Agron. Monogr. No9. A. Klute (Ed). ASA and SSSA, Madison WI. pp: 403-430.
  39. Ozanne, P.G., and T.C.Shaw. 1968. Advantages of the recently developed phosphate sorption test over the older extractant methods for soil phosphate. International, Congress of Soil Science. Trans. 2: 273-280.
  40. Polyzopoulos, N.A., V.Z. Keramidas., and H. Kiosse.1985. Phosphate sorption by some Alfisols of Greece as described by commonly used isotherms. Journal of Soil Science Society of American. pp: 49.
  41. Probert, M.E., and P.W. Moody. 1998. Relating phosphorus quantity, intensity and buffer capacity to phosphorus uptake. Australian Journal of Soil Research. 36:389-393.
  42. Rashmi, A.K., S.K.C. Biswas., and R. A.Subba. 2013. Phosphorus adsorption capacity in soybean growing soils of Madhya Pradesh African Crop. Indian Institute of Soil Science, Bhopal (M.P.). 1: 15-20.
  43. Rhoades, J.D. 1968.Cation exchang capacity. pp. 149-158. In: A.C. page (Ed.), Methods of Soil Analysis. Part 2, Monograph No 9 .American, Society of Agronomy.
  44. Rossi, C.G., D.M. Heil, N.B. Bonumà., and J.R. Williams. 2012. Evaluation of the Langmuir model in the Soil and Water Assessment Tool for a high soil phosphorus condition. Sci Verse Science Direct. Environmental Modelling and Software. 38: 40-49.
  45. Rowell, D.L. 1994. Soil science: methods and applications. Longman, London.
  46. Saunders, W.M.H. 1965. Phosphate retenyion by New Zealand soils and its relationship to free constituents.New Zealand Journal of Agricultural Research. 8: 30-57.
  47. Shirvani, M., M.Kalbasi, H. Shariatmadari, F. Nourbakhsh, and B. Najafi. 2006. Sorption- adsorption of cadmium in aqueous palygorshite, sepiolite, and calcite suspensions: Isotherm hysteresis. Chemosphere. 65: 2178-2184.
  48. Sims, J.T., R.R. Simard,and B.C.Joern. 1998. Phosphorus losses in agricultural drainage: Historical perspective and currentresearch. Journal of Environmental Quality. 27:277–293
  49. Sparks, D.L. 2003.Environmental soil chemistry. Academic Press, San Diego.
  50. Sui, Y., andM.L.Thompson.2000. Phosphorus sorption, desorption, and buffering capacity in a biosolids-amended Mollisol. Soil Science Society of America Journal.64: 164-169.
  51. Sui, Y., M.L. Thompson,andC.W. Mize. 1999. Redistribution of biosolids-derived total P applied to a Mollisol. Journal of Environmental Quality. 28:1068–1074.
  52. Thomas, G.W. 1996. Soil pH and soil acidity. PP. 475-490. In: Sparks, D. L. (Ed.), Methods of Soil Analysis. Part3, Chemical methods.SSSA, Madison, WI.
  53. Turin, H.J., and R.S.Bowman. 1997. Sorption behavior and competition of bromacil, napropamide, and prometryn. Journal of Environmental Quality. 26: 1282-1287.
  54. Wang, Q.R., and Y.C. Li. 2010. Phosphorus adsorption and desorption behavior on sediments of different origins. Journal of Soil Sediment. 10: 1159–1173.
  55. Wang, W., X.S. Hang, Y.M. Zhang, and Y.L. Yi. 2011. Phosphorus adsorption of red clay and its mechanism. Journal of Ecology and Rural Environment. 27: 109–112 (in Chinese).