اثر اسیدهای آلی و چرخه‌های تر و خشک شدن بر پایداری و توزیع اندازه خاکدانه‌ها در یک خاک آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

2 دانشیار بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

چکیده

ساختمان خاک و پایداری خاکدانه­ها از ویژگی­های فیزیکی خاک هستند کهبه­صورت مستقیم و غیرمستقیم بر سایر ویژگی­های خاک و رشد گیاه مؤثر می­باشند. این ویژگی­ها تحت تأثیر عواملی مانند نوع و میزان ماده آلی و شرایط رطوبتی خاک قرار می­گیرند. در یک پژوهش گل­خانه­ای به­صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار، اثر سطوح صفر، 05/0%، 5/0% و 5 درصد اسیدهای آلی و تعداد 1، 4، 8 و 12 چرخه 10روزه تر و خشکی بر پایداری و توزیع اندازه خاکدانه­ها در یک خاک آهکی بررسی شد. میانگین وزنی قطر خاکدانه­ها با اعمال چهار چرخه تر و خشک شدن در مقایسه با شاهد به­طور معنی­داری (22 درصد) افزایش یافت درحالی­که میانگین هندسی قطر خاکدانه­ها با اعمال 8 و 12 چرخه تر و خشکی به­طور معنی­داری به­ترتیب به­میزان 27 و 23 درصد کاهش یافت. میانگین هندسی قطر خاکدانه­ها با کاربرد اسیدهای آلی به­طور معنی­داری به­میزان 5 درصد افزایش یافت. اعمال 4، 8 و 12چرخه تر و خشکی سبب کاهش معنی­دار D10 و اعمال 8 و 12 چرخه تر و خشکی سبب کاهش D25،  D30،  D50،  D60 و  D75 منحنی توزیع اندازه خاکدانه­ها شد. ضریب یکنواختی منحنی توزیع اندازه خاکدانه­ها با اعمال 4، 8 و 12 چرخه تر و خشکی به­طور معنی­داری به­ترتیب به­میزان 13، 15 و 11 درصد افزایش یافت درحالی­که ضریب انحنای منحنی توزیع اندازه خاکدانه­ها با کاربرد 05/0 درصد اسیدهای آلی به­طور معنی­داری به­میزان 6 درصد کاهش یافت. به­طورکلی تر و خشک شدن سبب کاهش برخی شاخص­های توزیع اندازه خاکدانه­ها شد. درحالیکه اسیدهای آلی اثر مثبت معنی­داری بر پایداری خاکدانه­ها نداشته و نتوانستند از تأثیر منفی چرخه­های تر و خشکی بکاهند. هرچند انتظار می رفت کاربرد آنها در مناطقی که خاک در معرض تر و خشکی متوالی است بتواند از اثرات مخرب آن بر ساختمان و پایداری خاکدانه­ها و درنتیجه فرسایش­های آبی و بادی و پیامدهای منفی ناشی از آنها بکاهد. بنابراین پیشنهاد می­شود آزمایش در خاک­های مختلف و با کاربرد مقادیر بیشتر از اسیدهای آلی مختلف انجام شود. 

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Organic Acids and Wetting-Drying Cycles on the Aggregate Stability and Size Distribution in a Calcareous Soil

نویسندگان [English]

  • A. Khosravi 1
  • A. A. Moosavi 2
1 Former M.Sc. student, Department of Soil Science, College of Agriculture, Shiraz University
2 Associate Professor, Department of Soil Science, College of Agriculture, Shiraz University
چکیده [English]

Soil structure and aggregate stability are physical characteristics that directly and/or indirectly affect the other soil properties and growth of plants. These soil attributes are influenced by factors such as the type and amount of organic matter and soil water conditions. The effects of 0, 0.05%, 0.5%, and 5% organic acid and 1, 4, 8, and 12 wetting-drying (W-D) cycles of 10 days on the soil aggregate stability and size distribution were evaluated in a factorial experiment arranged in a completely randomized design with three replications. Mean weight diameters (MWD) of aggregates increased significantly (by 22%) as compared to the control when 4 cycles of W-D were applied, whereas geometric mean diameter (GMD) of aggregates was decreased by 27% and 23%, respectively, when 8 and 12 cycles of W-D were applied. Application of 4, 8, and 12 W-D cycles resulted in a significant decrease in D10, and application of 8 and 12 W-D cycles decreased D25, D30, D50, D60, and D75, significantly. The uniformity coefficient of the aggregate size distribution curve increased by 13%, 15%, and 11% when, respectively, 4, 8, and 12 W-D cycles were applied. Also, the curvature coefficient of the aggregate size distribution curve decreased by 6% in response to application of 0.05% organic acids. In general, W-D cycles decreased some indices of aggregate size distribution, while organic acids had no significant effect on aggregate stability.  Organic acids could mitigate the adverse effects of W-D cycles. Therefore, their application in the regions with W-D cycles is recommended to reduce the adverse effects of wetting-drying process on the soil structure and aggregate stability, and the negative results of the consequent water and wind erosions.

کلیدواژه‌ها [English]

  • Coefficient of curvature
  • Coefficient of Uniformity
  • Fulvic acid
  • Geometric mean diameter
  • humic acid
  • mean weight diameter
  1. اطمینان، س.، ف. کیانی، ف. خرمالی و ه. حبشی. 1390. نقش خصوصیات خاک و مواد مادری متفاوت بر پایداری خاکدانه در حوضه شصت کلاته استان گلستان. مجله مدیریت خاک و تولید پایدار، جلد 1، شماره 2، صفحات 39 تا 60.
  2. امجدیان، م. 1393. اثر بقایای پسته و تنش شوری بر برخی ویژگی­های فیزیکی و شیمیایی سه خاک مختلف و رشد گندم در این خاک­ها. پایان­نامه کارشناسی­ارشد، دانشکده کشاورزی، دانشگاه شیراز.
  3. فتح العلومی، س. و ش. اصغری. 1393. اثرات لجن فاضلاب شهری اردبیل بر برخی خصوصیات فیزیکی و هیدرولیکی یک خاک درشت بافت زیر کشت گندم. نشریه دانش آب و خاک، جلد 24، شماره 4، صفحات 169 تا 183.
  4. محمودآبادی، م. و ب. احمد بیگی. 1390. تأثیر ویژگی­های فیزیکی و شیمیایی خاک بر پایداری خاکدانه در چند نوع سیستم کشت. مجله مدیریت خاک و تولید پایدار، جلد 1، شماره 2، صفحات 61 تا 79.
  5. نعمتی، ف.، ف. رییسی و ع. ر. حسن پور. 1391. پایداری خاکدانه­ها در تیمارهای مختلف شوری و مواد آلی خاک در حضور کرم خاکی آنسیک (Lumbricus terrestris L.) در شرایط گلخانه. مجله پژوهش­های حفاظت آب و خاک، جلد 9، شماره 1، صفحات 41 تا 60.
  6. Aldaood, A., M. Bouasker and M. Al-Mukhtar. 2014. Impact of wetting–drying cycles on the microstructure and mechanical properties of lime-stabilized gypseous soils. Engin. Geolog. 174:11-21.
  7. Bravo-Garza M. R., B. R. Bryan and P. Voroney. 2009. Influence of wetting and drying cycles and maize residue addition on the formation of water stable aggregates in Vertisols. Geoderma, 151:150-156.
  8. Bronick, C. J. and R. Lal. 2005. Soil structure and management: a review. Geoderma, 124:3-22.
  9. Chepil, W. S. 1962. A compact rotary sieve and the importance of dry sieving in physical soil analysis. Soil Sci. Soc. Am. Proc. 26:4-6.
  10. Cosentinoa, D., C. Chenub and Y. L. Bissonnais. 2006. Aggregate stability and microbial community dynamics under drying–wetting cycles in a silt loam soil. Soil Biol. Biochem. 38:2053-2062.
  11. De Gryze, S., J. Six, C. Brits and R. Merckx. 2005. A quantification of short-term macro aggregate dynamics: influences of wheat residue input and texture. Soil Biol. Biochem. 37:55-66.
  12. Denef, K., J. Six, H, Bossuyt, S. D. Frey, E.T. Elliot, R. Merckx and K. Paustian. 2001. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 33:1599-1611.
  13. Denef, K., J. Six, R. Merckx and K. Paustian. 2002. Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant Soil. 246:185-200.
  14. Dexter, A. R. 1991. Amelioration of soil by natural processes. Soil Till. Res. 20:87-100.
  15. Emerson, W. W. 1977. Physical properties and structure. pp. 78-104. In: J. S. Russlle and E. L. Greasen (Eds.). Soil factors in crop production in a semi-arid environment. University of Queensland Press, Queensland, Australia.
  16. Fortun, A., J. Benayas and C. Fortun. 1990. The effects of fulvic and humic acids on soil aggregation: a micromorphological study. J. Soil Sci. 41:563-572.
  17. Foster, R. C. 1981. Polysaccharides in soil fabric. Sci. 241: 665-667.
  18. Gee. G. W. and J. W. Bauder. 1986. Particle size analysis. pp. 383-411. In: A. Klute, (Ed.), Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods. 2nd Ed., ASA, Madison, WI. USA.
  19. Hariss, R.F., G. Chesters and O. N. Allen. 1966. Dynamics of soil aggregation. In: Norman, A. G. (Ed.), Adv. Agron. 18:107-169.
  20. Helmke, P. and D. L. Sparks. 1996. Lithium, sodium, potassium, rubidium, and cesium. pp. 551-574. In: D. L. Sparks et al. (Eds), Method of Soil Analysis. Part 3. 3rd Ed., ASA and SSSA, Madison WI, USA.
  21. Kiem, R. and E. Kandeler. 1997. Stabilization of aggregates by the microbial biomass as affected by soil texture and type. Appl. Soil Ecol. 5: 221-230.
  22. Kohler, J., F. Caravaca and A. Roldán. 2009. Effect of drought on the stability of rhizosphere soil aggregates of Lactuca sativa grown in a degraded soil inoculated with PGPR and AM fungi. Appl. Soil Ecol. 42:160-165.
  23. Kohler, J., F. Caravaca and A. Rolan. 2010. An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol. Biochem. 42:429-434.
  24. Lal, R. 1991. Soil structure and sustainability. J. Sustain. Agric. 1: 67- 92.
  25. Loeppert, R. H. and D. L. Suarez. 1996. Carbonate and gypsum. pp. 437-474. In: D. L. Sparks et al. (Eds.), Methods of Soil Analysis. Part 3, 3rd Ed. Chemical and Microbiological Properties. ASA and SSSA Inc., Madison, WI, USA.
  26. Ma, R., C. Cai, Z. Li, J. Wang, T. Xiao, G. Peng and W. Yang. 2015. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil Till. Res. 149:1-11.
  27. Mbagwu Nsukka, J. S. C. and P. Bazzotti Firenze. 1988. Stability of micro aggregates as influenced by antecedent moisture content, organic waste amendment and wetting and drying cycles. Catena. 15:565-576.
  28. Nelson, D. W. and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. pp. 961-1010. In: A. L. Page et al. (Eds.), Methods of Soil Analysis, Part 2, 2nd Ed., ASA Inc, Madison, WI, USA.
  29. Oades, J. M. 1984. Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil. 76:319-337.
  30. Piccolo, A., G. Pietramellara and J. S. C. Mbagwu. 1997. Use of humic substances as soil conditioners to increase aggregate stability. Geoderma, 75:267-277.
  31. Rajaram, G. and D. C. Erbach. 1999. Effect of wetting -drying on soil physical properties. J. Terra Mech. 36:39-49.
  32. Rhoades, J. D. 1996. Salinity: Electrical conductivity and total dissolved solids. pp. 417-436. In: D. L. Sparks et al. (Eds.), Methods of Soil Analysis. Part 3. 3rd Ed. ASA Inc, Madison, WI, USA.
  33. Richards, L. A. 1954. Diagnosis and Improvement of Saline and Alkali Soils. U. S. Department of Agriculture Hand book, Vol. 60, Washington D. C., USA, 160 P.
  34. Rillig, M. C. and D. L. Mummey. 2006. Tansley review mycorrhizas and soil structure. New Phytol. 171: 41-53.
  35. Sebahattin, A. and C. Necdet. 2005. Effect of different levels and application times of humic acid on root and leaf yield and yield components of foraige turnip (Brassica rapa L.). Agron. J. 4:130-133.
  36. Sharma, M. L. and J. Tunny. 1978. Interaction of gypsum with humofina and krilium on the structural stability and water flow properties of soils. pp. 181-190. In: W. W. Emerson, R. D. Bond and A. R. Dexter (Eds.), Modification of Soil Structure. John Wiley and Sons, NY, USA.
  37. Singer, M. J., R. J. Southard, D. J. Warrington and P. Janitzky. 1992. Stability of synthetic sand clay aggregates after wetting and drying cycles. Soil Sci. Soc. Am. J. 56:1843-1848.
  38. Summer, M. E. and W. P. Miller. 1996. Cation exchange capacity and exchange coefficient. pp: 1205-1230. In: D. L. Sparks (Ed.), Methods of Soil Analysis, SSSA Book Series 5, Madison, WI, USA.
  39. Thomas, G. W. 1996. Soil pH and soil acidity. pp. 475-490. In: D. L. Sparks et al. (Eds.), Methods of Soil Analysis, Part 3. 3rd Ed. ASA Inc, Madison, WI, USA.
  40. Tisdall, J. M. and J. M. Oades. 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33:141-163.
  41. Utomo, W. H. and A. R. Dexter. 1982. Changes in soil aggregate water stability induced by wetting and drying cycles in non-saturated soil. J. Soil Sci. 33:623-637.
  42. Wang, J. G., Z. X. Li, C. F. Cai, W. Yang, R. M. Ma and G. B. Zhang. 2013. Effects of stability, transport distance and two hydraulic parameters on aggregate abrasion of Ultisols in overland flow. Soil Till. Res. 126:134-142.