برهمکنش میکوریزا، کود آلی و پتاسیم بر عملکرد و خصوصیات کیفی میوه انار (Punica granatum L.)

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه خاکشناسی دانشگاه آزاد اسلامی - واحد داراب

2 دانشیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

3 مربی پژوهش بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، داراب، ایران

چکیده

به منظور بررسی اثرات کاربرد میکوریزا، پتاسیم و کود دامی بر عملکرد و خصوصیات کیفی میوه انار، در سال 1393، پژوهشی به صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی، با 12 تیمار در سه تکرار انجام شد. تیمارهای آزمایشی شامل ترکیبی از دو سطح میکوریزا (0 و  500 گرم به ازا هر درخت)، سه سطح کود گوسفندی (0، 10 و 20 کیلوگرم برای هر درخت) و دو سطح پتاسیم (0 و 500 گرم اکسید پتاسیم به ازای هر درخت) بود. صفات اندازه­گیری شده شامل عملکرد هر درخت، مقدار اسیدیته، بریکس، کربوهیدرات‌ها و پلی فنول های میوه انار (سیناپیک اسید، گالیک اسید، کاتچیت، راتین و اسکوربیک اسید) بود. نتایج نشان داد که اثرات اصلی پتاسیم، میکوریزا و کود دامی بر کاهش اسیدیته آب میوه معنی‌دار (P<0.01) بود. کاربرد منفرد میکوریزا و یا کود دامی عملکرد میوه، میزان کربوهیدرات و پلی‌فنل‌ها را به طور معنی‌داری افزایش داد. کاربرد پتاسیم گرچه تاثیر معنی‌داری بر افزایش بریکس، کاتچین و اسکوربیک اسید نداشت اما به طور معنی‌داری (P<0.01) عملکرد میوه و مقدار کربوهیدرات، سیناپیک اسید، گالیک اسید، و راتین را افزایش داد. تاثیر کاربرد توأم میکوریزا، کود دامی و پتاسیم بر کلیه صفات مورد بررسی در سطح (P<0.01) معنی‌دار بود به غیر از وزن میوه، pH، بریکس و راتین. کمترین میزان اسیدیته، بیشترین میانگین وزن 5 میوه و بالاترین مقادیر سیناپیک اسید، گالیک اسید، کاتچین، راتین و اسکوربیک اسید آب میوه از کاربرد توأم 500 گرم میکوریزا، 500 گرم پتاسیم و 20 کیلوگرم کود گوسفندی به ازا هر درخت به دست آمد. بالاترین عملکرد انار(44 کیلوگرم دردرخت) از کاربرد توأم 500 گرم میکوریزا، 10 کیلو گرم کود گوسفندی و500 گرم پتاسیم به دست آمد که در مقایسه با عملکرد تیمار شاهد، 127 درصد افزایش یافت. با توجه به یک ساله بودن آزمایش، حصول نتایج قابل اطمینان تر نیاز به بررسی بیشتر دارد. 

کلیدواژه‌ها


عنوان مقاله [English]

Combined Effects of Mycorrhiza, Organic Fertilizers, and Potassium Application on Yield and Quality of Pomegranate (Punica granatum L.) fruit

نویسندگان [English]

  • M. Parvin 1
  • A. H Ziaeyan 2
  • M. Dastfal 3
1 MSc., Department of Soil Science, Darab Branch, Islamic Azad University, Darab, Iran
2 Associate Professor., Soil and Water Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
3 Scientific member, Seed and Plant Improvement Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Darab, Iran
چکیده [English]

In order to investigate the effects of mycorrhiza, potassium, and manure application on the yield and quality of pomegranate fruits, in 2014, an experiment were conducted in a randomized complete block design as factorial with 12 treatments and three replicates. Experimental factors included combinations of two levels of mycorrhiza (0 and 500 g.tree-1), three levels of sheep manure (0, 10, and 20 kg per tree) and two levels of potassium (0 and 500 g K2O.tree-1). The measured traits included yield per tree, contents of carbohydrate, brix, and phenolic acids (sinapic acid, gallic acid, catechin, rutin and ascorbic acid) in the pomegranate fruits. The results showed that the main effects of potassium, mycorrhizae and manure were significant (P<0.01) in reducing the acidity of the juice. Mycorrhiza and/or manure application significantly increased the fruit yield, the amount of carbohydrates, and polyphenols. Although potassium applications had no significant effects on increasing brix, catechin and ascorbic acid, but significantly (P<0.01) increased the fruit yield and the amount of carbohydrates, sinapic acid, gallic acid and rutine. The combined application of mycorrhiza, manure, and potassium had a significant effect (P <0.01) on the studied factors, with the exception of fruit weight, pH, brix and ratine. The lowest acidity and highest values of sinapic acid, gallic acid, catechin, rutine and ascorbic acid in fruits juice were obtained from combined application of 500 g mycorrhiza, 500 grams of potassium and 20 kg of manure per tree. The highest yield of fruit (44 kg per tree) was obtained from the combined application of 500 g mycorrhiza, 10 kg of sheep manure and 500 g of K2O, which showed 127% increase in yield compared with the control treatment. 

کلیدواژه‌ها [English]

  • Manure
  • mycorrhizal fungi
  • Phenolic acids
  • Potassium sulfate
  1. اثنی عشری، م. و م. ر.، زکایی خسرو شاهی. 1387. فیزیولوژی و تکنولوژی پس از برداشت محصولات کشاورزی. انتشارات دانشگاه بوعلی سینا، شماره 298، 658 صفحه.
  2. امامی، ع. 1375. روش های تجزیه گیاه (جلد اول). نشریه فنی شماره 982. مؤسسه تحقیقات آب و خاک. تهران، ایران. 128 صفحه.
  3. جهان بین، ر.، س.، یاوری، و ع. تفضلی. 1387. اثر توفوردی و سولفات پتاسیم بر ویژگی‌های کمی و کیفی پرتقال نافی. مجله علوم باغبانی «علوم وصنایع کشاورزی ». جلد22 ، شماره 2.
  4. حسینی نیا، س. م. 1373، انار. دفتر امور میوه‌جات گرمسیری و نیمه گرمسیری، معاونت امور باغبانی، وزارت کشاورزی.
  5. دانشیان ، ج .، م.، یوسفی، و م.، علیمحمدی. 1389. تأثیر کود دامی و قارچ میکوریزا بر عملکرد میوه دانه کدوی تخم کاغذی در شرایط تنش کم ابی . فصل نامه علمی – پژوهشی اکوفیزیولوژی گیاهان زراعی . دوره 2، شماره 3 ،136-146.
  6. ‌علی احیایی، م. و ع. ا.، بهبهانی زاده. 1373.  شرح روش‌های تجزیة شیمیایی خاک، جلد 1، نشریه شماره 893. موسسة تحقیقات خاک و آب تهران، ایران، 128 صفحه.
  7. ملکوتی، م. ج. و م. ن.، غیبی. 1379. تعیین حد بحرانی عناصر غذایی مؤثر در خاک، گیاه و آب (چا دوم با بازنگری کامل) در کشور. نشر آموزش کشاورزی سازمان تات، وزارت کشاورزی، کرج، ایران.
  8. منوچهری، س. و م. ج.، ملکوتی. 1382. تغذیه بهینه  کودی ضرورتی انکار ناپذیر در افزایش عملکرد کمی و کیفی انار، نشریه  فنی شماره  304، مؤسسه تحقیقات خاک و آب، وزارت جهاد کشاورزی.
  9. وظیفه شناس، م. ر. 1393. گزارش نهایی طرح ثبت و شناسایی ارقام تجاری انار کشور، موسسه تحقیقات اصلاح و تهیه نهال و بذر.
    1. Edmeades, D. C. 2003. The long-term effects of manures and fertilizers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems.  66: 165–180.
    2. Amiri, M.E., and E., Fallahi. 2009. Impact of animal manure on soil chemistry, mineral nutrients, yield, and fruit quality in ‘Golden Delicious’ apple. Jounal of Plant Nutrition. 32: 610-617.
    3. Bagri, P., M., Ali, V., Aeri, M., Bhowmik, and S., Soltana. 2009. The Antidiabetic effect of Punica granatum flowers: effects on hyperlipidemia, Pancreatic cells Li did Peroxidation and antioxidant enzymes in experimental diabetes. Food and Chemical Toxicology, 47050-54.
    4. Baldi, E., M., Toselli, and B., Marangoni. 2010. Nutrient partitioning in potted peach (Prunus persica L.) trees supplied with mineral and organic fertilizers. Jounal of Plant Nutrition, 33: 2050-2061.
    5. Hallmann, E. 2012. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. Journal of the Science of Food and Agriculture, 92(14): 2840-2848.
    6. Haynes, R.J., and R., Naidu. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient cycling in Agroecosystems 51, 123-137.
    7. Hamauzu, Y., and T. Hanakawa. 2003. Relation of highly polymerized procyanidin to the potential browning susceptibility in pear fruits. Journal of Japan  Soceiety Horticulture  Science, 72:415-421.
    8. Kaur, G., Z., Jabbar, M., Athar, and S., Alam. 2006. Punica granatum (pomegrunatum) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatoxicity in mice. Food Chemical Toxicology, 44: 948- 993
    9. Kochert, G. 1978. Carbohydrate determination by the phenol sulfuric acid method In: Helebust JA. & Craig, JS. (ed.): Hand book of phycologia method: 56-97, Cambridge University Press, Cambridge.
    10. Leonel, S., and M.A., Tecchio. 2009. Cattle manure fertilization increases fig yield. Science Agriculture, 66(6): 806-811
    11. Lester, G.E., J.L., Jifon, and D.J., Makus. 2010. Impact  of  potassium  nutrition  on  postharvest  fruit  quality: melon (Cucumis melo L.)  case study. Plant Soil, 335: 117-131.
    12. Lin, D, D., Huang, and S., Wang. 2004. Effects of potassium levels on fruit quality of muskmelon in soilless medium culture. Scientia  Horticulturae, 102: 53-60.
    13. Mahmoud, A.R., and  M.M., Hafez. 2010. Inceasing  productivity of potat0  plants  (solanum  tuberosum  L.)by  using  potassium  fertilizer  and  humic  acid  application  .International Journal Academic Research. 2:83-88.
    14. Mustafa, C., H., Yashar, and D., Gokhan. 2009. Classification of eight Pomegranate Juices based on antioxidant capacity Measured by four Methods. Food Chemistry, 112: 721-726.
    15. Panagiotopoulos, L., C., Rahn, and M. Fink. 2001. Effects  of nitrogen  fertigation  on  the growth, yield, quality  and leaf  nutrient  composition  of  melon (cucumis  melo  L.). Acta  Horticulturae, 563:115-121.
    16. Raja, M.E. 2006. Studies on susceptibility of pomegranate cultivars in India to nutrient disorders. Intl. Symp. On Pomegranate and minor Mediterranean Fruits. Adana, Turkey.
    17. Sharma, A. K. 2002. Biofertilizers for sustainable agriculture. Agrobios, India. 407 pp.
    18. Soares, A.G., L.C., Trugo, N., Barrel, and L.F., Souza. 2005. Reduction of internal browning of pineapple fruit (Ananas conscious L.) by preharvest soil application of potassium. Postharvest Biology Technology, 35:201-207.
    19. Song, H. 2005. Effects of VAM on host plant in the condition of drought stress and its mechanisms. Journal of Biological Chemistry, 1: 44-48.
    20. Swift, C. E. 2004. Mycorrhiza and soil phosphorus levels. Area Extension Agent, http://www.colostate.edu/Depts/CoopExt/TRA/PLANTS/Mycorrhiza.
    21. Szczerba, M. W., D.T., Britto, and H.j., Kronzucker. 2008. K+ transport in plants. Physiology and Molecular Biology, 166: 447-466.
    22. Tehranifar, A., and S., Mahmoodi Tabar. 2009. Foliar application of potassium and boron during pomegranate (Punica granatum) fruit development can improve fruit quality. Horticulture Environment Biotechnology, 50:191-196.