تخمین شاخص تغذیه نیتروژن با استفاده از مدل‌های شبیه‌سازی AquaCrop و HYDRUS در طول دوره رشد ذرت دانه‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی فارغ التحصیل دکتری گروه مهندسی آبیاری و زهکشی پردیس ابوریحان دانشگاه تهران

2 استاد گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان دانشگاه تهران

3 استادیار گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

4 دانشیار گروه مهندسی آبیاری و زهکشی پردیس ابوریحان دانشگاه تهران

چکیده

پایش شاخص تغذیهنیتروژن یا NNI(Nitrogen Nutrition Index) در طول فصل رشد نیازمند آزمایش­های پر هزینه و زمانبر است. به دلیل اهمیت تعیین NNI در بهبود کارایی مصرف کود و آب و کاهش خطرات زیست محیطی، اخیراً در سطح دنیا مطالعاتی به منظور تخمین غیر مستقیم آن توسط پارامترهای مختلف گیاهی انجام شده است. هدف اصلی از این مطالعه، تخمین NNI در طول فصل رشد ذرت با استفاده از یک روش غیر تخریبی بود. دو پارامتر مورد نیاز برای تخمین NNI عملکرد ماده خشک و میزان جذب واقعی نیتروژن توسط گیاه در طول دوره رشد است که به ترتیب توسط دو مدل AquaCrop و HYDRUS-2D تخمین زده شدند. در این مطالعه از معادله نیتروژن بحرانی ارائه شده برای کشت ذرت تابستانه در ایران استفاده شد. نمونه­های گیاهی و خاک برای واسنجی و صحت سنجی دو مدل مذکور در طول دو سال زراعی برداشت شدند. نتایج بدست آمده نشان دادند که مدل AquaCrop با دقت خوبی قادر است عملکرد ماده خشک ذرت را طی دوره کشت تخمین بزند (R2 =0.995, NRMSE= 14.21 %). همچنین دقت برآورد میزان جذب نیتروژن از مدل HYDRUS نسبتاً قابل قبول بود (R2 >0.907, NRMSE< 28.20 %). در نهایت شاخص تغذیه نیتروژن در طول دو فصل، یکبار با استفاده از داده­های اندازه­گیری شده از مزرعه محاسبه (NNIo) و بار دیگر با استفاده از مقادیر شبیه­سازی شده توسط دو مدل مذکور تخمین زده شد (NNIp). مقایسه پراکنش نقاط NNIp در برابر NNIo نشان داد که میزان درستی تخمین بر اساس معیارهای R2 >0.638 و NRMSE< 20.86 % برای هر دو سال قابل قبول بود. 

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Nitrogen Nutrition Index Using AquaCrop and HYDRUS Simulation Models during Maize Growing Period

نویسندگان [English]

  • A. Ranjbar 1
  • A. Rahimikhoob 2
  • H. Ebrahimian 3
  • M. Varavipour 4
1 Former PhD student, Department of Irrigation and Drainage Engineering, College of Aburaihan, University of Tehran
2 Professor, Department of Irrigation and Drainage Engineering, College of Aburaihan, University of Tehran
3 Assistant Professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran
4 Associate Professor, Department of Irrigation and Drainage Engineering, College of Aburaihan, University of Tehran
چکیده [English]

Monitoring nitrogen nutrition index (NNI) during the growing season requires costly experiments and is a time-consuming process. Recently, some remarkable studies have been carried out in order to determine NNI by employing different plant parameters which can improve fertilizer and water use efficiency and reduce environmental hazards. The main objective of this study was to estimate the NNI during the growing season of maize by using a non-destructive method. Dry matter (W) and actual nitrogen uptake (Nu), the required parameters for predicting NNI,were estimated by AquaCrop and HYDRUS-2D models, respectively. The critical nitrogen curve, proposed by Ranjbar et al.for summer maize in Iran, was used in this study. Plant and soil samples were taken for calibration and validation of the two models during the two growing seasons. The results showed that AquaCrop can accurately predict maize dry matter production during the growth period (R2 =0.995, NRMSE= 14.21 %). Moreover, the accuracy of the estimation of nitrogen uptake by the HYDRUS-2D was relatively acceptable (R2 >0.907, NRMSE< 28.20 %). Finally, NNI was calculated using measured (NNIo) and simulated (NNIp) data over the two seasons. Comparing the NNIp versus the NNIo revealed that accuracy of the estimated values was acceptable based on the R2and NRMSE criteria (>0.638 and <20.86, respectively) in both years.

کلیدواژه‌ها [English]

  • Water and fertilizer management
  • N uptake
  • dry matter
  • Critical N equation
  1. بهدادیان، ع.،سلطانی ، ا.، زینلی، ا.، عجم نوروزی ، ح.، معصومی، ح.(1392). ارزیابی اثرات مدیریت کود نیتروژن در مرحلة گلدهی بر عملکرد کلزا در شرایط گرگان. مجله به زراعی کشاورزی. دوره 15، شماره 1، 163-174.
  2. رنجبر.آ.، رحیمی خوب.ع.، ابراهیمیان.ح.، وراوی پور. م. a1396. شبیه­سازی توأمان انتقال رطوبت، نیترات و آمونیوم در خاک با استفاده از مدل HYDRUS-2D در آبیاری جویچه­ای ذرت. نشریه پژوهش آب در کشاورزی. 31، 2، 259-276.
  3. رنجبر.آ.، رحیمی خوب.ع.، وراوی پور. م.، ابراهیمیان.ح. b1396. معادله نیتروژن بحرانی گیاه ذرت در منطقه پاکدشت. تحقیقات آب و خاک ایران. 48، 1، 1-9.
  4. زینلی، ا.، سلطانی ، ا.، گالشی ، س ، ا.، موحدی نائینی، س، ع. (1391). ارزیابی شاخص تغذیه نیتروژنی مزارع گندم در گرگان . مجله پژوهش های تولید گیاهی. جلد نوزدهم، شماره چهارم. 137-156
  5. .Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. CropEvapotranspiration–Guidelines for Computing Crop Water Requirements.FAO, Rome (Irrigation and Drain. Paper No. 56).
  6. Ata-Ul-Karim, S.T., Yao, X., Liu, X., Cao, W., Zhu, Y. 2014. Determination of Critical Nitrogen Dilution Curve Based on Stem Dry Matter in Rice. PLoS ONE, 9, 8.
  7. Bremner, J.M., and Keeney D.R. 1965. Steam distillation methods for determination of ammonium nitrite and nitrate. Analytica Chimica Acta, (32), 485-495.
  8. Clemente, R.S., De Jong, R., Hayhoe, H.N., Reynolds, W.D., and Hares, M. 1994. Testing and comparison of three unsaturated soil water flow models. Agricultural Water Management, (25), 135-152.
  9. Crevoisier, D., Popova, Z., Mailhol, J.C., Ruelle, P. 2008. Assessment and simulation of water and nitrogen transfer under furrow irrigation. Agricultural Water Management. (95), 354–366.
  10. Ebrahimian, H., Liaghat, A., Parsinejad, M., Playan, E., Abbasi, F., Navabian M. 2013. Simulation of 1D surface and 2D subsurface water flow and nitrate transport in alternate and conventional furrow fertigation. Journal of Irrigation Science, 31(3), 310-316.
  11. Feddes, R.A., Kowalik, P.J., Zaradny, H .1978. Simulation of Field Water Use and Crop Yield. John Wiley & Sons, NewYork.
  12. Feibo, W., Lianghuan, W., Fuha, X.1998. Chlorophyll meter to predict nitrogen sidedress requirements for short-season cotton. Field Crops Res. 56, 309–314.
  13. Gheysari, M., Mirlatifi, S.M., Bannayan, M., Homaee, M. and Hoogenboom, G., 2009. Interaction of water and nitrogen on maize grown for silage. Agricultural water management, 96(5), 809-821.
  14. Greenwood, D. J., Lemaire, G., Gosse, G., Cruz, P., Draycott, A. and Neeteson, J. J. 1990. Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany. London.66: 425–436.
  15. Hanson, B.R., Simůnek, J., Hopmans, J.W. 2006. Evaluation of urea– ammonium–nitrate fertigation with drip irrigation using numerical modeling. Agricultural Water Management (86):102–113.
  16. Heng, L.K., Hsiao, T., Evett, S., Howell, T. and Steduto, P., 2009. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal, 101(3), 488-498.
  17. Horowitz, W. (1970). Official Methods of Analysis. 11th Edition.vAssociation of Official Analytical Chemists, vWashington, vD.C.
  18. Houles, V., Gu´erif, M., Mary, B.V. 2007. Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations. Eur. J. Agron. 27, 1–11.
  19. Jamieson, P.D., Porter, J.R., Wilson, D.R.1991. A test of computer simulation model ARC-WHEAT1 on wheat cropsgrown in New Zealand. Field Crops Res.27, 337-350.
  20. Justes, E., Mary, B., Meynard, J.M., Machet, J.M., Thelier-Huché, L., 1994. Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of botany, 74(4), 397-407.
  21. Klute, A. 1986. Methods of soil analysis part I. Physical and mineralogical methods. 2nd Ed. Soil Science Society of America. 1188 p.
  22. Li, Y., Simůnek, J., Zhang, Z.T., Jing, L.F., Ni, L.X., 2015. Evaluation of nitrogen balance in a direct-seeded-rice fieldexperiment using Hydrus-1D.Agric. Agricultural Water Management. 148, 213–222.
  23. Li, W., He, P., Jin, J. 2012. Critical nitrogen curve and nitrogen nutrition index for spring maize in north east china. Journal of Plant Nutrition, 35(11), 1747-1761.
  24. Mailhol, J.C., Ruelle, P., Nemeth, I. 2001. Impact of fertilization practices on nitrogen leaching under irrigation. Irrigation Science 20:139–147.
  25. Mousavizadeh, S.F., Honar, T., Ahmadi, S.H. 2016. Assessment of the AquaCrop Model for simulating Canola under different irrigation managements in a semiarid area. International Journal of Plant Production. 10 (4), 425-445.
  26. Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12(3), 513-522.
  27. Naud, C., Makowski, D., Jeuffroy, M.H., 2008. Is it useful to combine measurements taken during growing season with a dynamic model to predict the nitrogen status of winter wheat? European Journal of Agronomy. 28 (3), 291–300.
  28. Patrignani, A. and Ochsner, T.E. 2015. Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agronomy Journal, 107(6), 2312-2320.
  29. Phogat, V., Skewes, M.A., Cox, J.W., Sanderson, G., Alam, J., Šimu˚ nek, J., 2014. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching. Journal of Hydrology, 513, 504–516.
  30. Phogat, V., Mahadevan, M., Skewes, M., Cox, J.W., 2012. Modelling soil water andsalt dynamics under pulsed and continuous surface drip irrigation of almondand implications of system design. Irrigation. Science. 30 (4), 315–333.
  31. Peng, S., Garcia, F.V., Laza, R.C., Cassman, K.G., 1993. Adjustment for specific leaf weight improves chlorophyll meter’s estimate of rice leaf nitrogen concentration. Agronomy Journal. 85, 987–990.
  32. Plenet, D., Lemaire, G., 2000. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Plant Soil. 216, 65–82.
  33. Ramos, T.B., Šimu˚ nek, J., Goncalves, M.C., Martins, J.C., Prazeres, A., Pereira, L.S., 2012. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agricultural Water Management. 111, 87–104.
  34. Raes, D., Steduto, P., Hsiao, T.C. and Fereres, E. 2012. AquaCrop Reference Manual, AquaCrop version 4.0. Rome, Italy: FAO.
  35. Simůnek, J., van Genuchten, M.T., ˇSejna, M., 2008. Development and applications of the HYDRUS and STANMOD software packages, and related codes. Vadose ZoneJ. 7 (2), 587–600.
  36. Simůnek, J., Van Genuchten, M.T. and Šejna, M., 2006. The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical manual, version, 1, p.241.
  37. Simůnek, J., Jacques, D., Hopmans, J.W., Inoue, M., Flury, M., van Genuchten, M.T., 2002. Solute transport during variably- saturated flow—inverse methods. In: Dane JH, Topp GC (eds) Chapter 6.6 in methods of soil analysis: part 1. Physical methods, 3rd edn. SSSA, Madison, pp 1435–1449.
  38. Van Gaelen, H., Tsegay, A., Delbecque, N., Shrestha, N., Garcia, M., Fajardo, H., Miranda, R., Vanuytrecht, E., Abrha, B., Diels, J. and Raes, D., 2015. A semi-quantitative approach for modelling crop response to soil fertility: evaluation of the AquaCrop procedure. The Journal of Agricultural Science, 153(7), 1218-1233.
  39. Van Genuchten, M.T. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal. 44, 892–898.
  40. Wesseling, J.G., Elbers, J.A., Kabat, P., van den Broek, B.J. 1991. SWATRE: instructions for input, Internal Note, Winand Staring Centre, Wageningen, the Netherlands.
  41. Yin, F., Fu, B., and Mao, R. 2007. Effect of nitrogen fertilizer application rates on nitrate nitrogen distribution in salin soil in the Hai river basin, china. Journal of Soils and Sediments, 7(3):136-142.
  42. Zhang.X, Wang. Q., Xu. J., Gilliam. F. S, Tremblay. N., Li. C. 2015. In Situ Nitrogen Mineralization, Nitrification, and Ammonia Volatilization in Maize Field Fertilized with Urea in Huanghuaihai Region of Northern China. PLOS ONE, 10(1).
  43. Zhao, B., Liu, Z., Ata-Ul-Karim, S. T., Xiao, J., Liu, Z., Qi, A., ... & Duan, A. 2016. Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements. Field crops research, 185, 59-68.