تعیین حد بحرانی فسفر خاک برای لوبیا

نویسندگان

1 عضو هیأت علمی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مرکزی

2 عضو هیأت علمی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مرکزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، اراک، ایران

3 عضو هیأت علمی بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

چکیده

آزمون خاک نقش بسیار مهمی در مدیریت عناصر غذایی در فرایند تولید محصولات کشاورزی دارد. تفسیر نتایج آزمون خاک نیازمند تعیین حدود بحرانی عناصر غذایی در خاک­های یک منطقه بوده و برای مناطق کشاورزی دیگر قابل ‌استفاده نیست یا از دقت پائینی برخوردار است، لذا حد بحرانی بایستی در شرایط خاک‌های منطقه موردنظر تعیین و منظور شود تا آزمون خاک برای هر عنصر بتواند مبنای توصیه کودی قرار گیرد. لوبیا (.Phaseolus vulgaris L) با دارا بودن پروتئین بالا از محصولات مهم کشاورزی است که در استان مرکزی کشت می‌شود. با توجه به ضرورت تعیین معیار منطقه­ای حد بحرانی، برای تفسیر نتایج آزمون فسفر در خاک­های تحت کشت لوبیا و کمبود اطلاعات در این زمینه در استان مرکزی، این تحقیق انجام شد. 23 نمونه خاک سطحی(30-   0سانتیمتر) با دامنه وسیع ازنظر غلظت فسفر قابل‌استفاده و همچنین خصوصیات فیزیکی و شیمیایی از میان تعدادی از خاک‌های نمونه‌برداری شده مزارع استان انتخاب و پس از آماده‌سازی در گلخانه، لوبیا در آن‌ها کشت گردید. برای بررسی واکنش گیاه لوبیا نسبت به مصرف کود فسفر از دو سطح صفر و 50 میلی‌گرم فسفر خالص در کیلوگرم خاک از منبع پتاسیم هیدروژن مونو فسفات در این آزمایش استفاده گردید. آزمایش گلخانه­ای‌ در قالب طرح کاملاً تصادفی با سه تکرار به اجرا درآمد. پس از اتمام دوره رویشی،گیاهان برداشت شد و پاسخ­های گیاهی شامل، وزن ماده خشک، غلظت و جذب کل فسفر و رشد نسبی تعیین شد. نتایج تجزیه واریانس نشان داد که اثرات اصلی و بر همکنش خاک و کود فسفر، در سطح احتمال یک درصد بر روی وزن ماده خشک، غلظت و جذب کل فسفر معنی‌دار بود. نتایج مقایسه میانگین مصرف کود اثر معنی­داری بر پاسخ های گیاهی نشان داد. با استفاده از روش تصویری کیت و نلسون حد بحرانی فسفر (با روش اولسن) 13 میلی‌گرم بر کیلوگرم خاک به دست آمد. وزن ماده خشک با مقدار فسفر قابل‌استفاده و کربن آلی خاک همبستگی مثبت و معنی‌داری داشت. جذب کل فسفر گیاه با فسفر قابل‌استفاده (**554/0 r =)، قابلیت هدایت الکتریکی (*505/0r =)، شن (*413/0 r =) و کربن آلی خاک (*620/0 r =) همبستگی مثبت و معنی‌دار و با رس همبستگی منفی و معنی­داری (*448/0- r =) داشت.
 
آزمون خاک، واسنجی، توصیه کود

کلیدواژه‌ها


عنوان مقاله [English]

Determination of Critical Level of Soil Phosphorus for Bean

نویسندگان [English]

  • M. A. Khodshenas 1
  • J. Ghadbeiklou 2
  • M. Dadivar 3
1 Academic Member, Markazi Agricultural and Natural Resources Research and Training Center
2 Academic Member, Markazi Agricultural and Natural Resources Research and Training Center, AREEO, Arak, Iran
3 Academic Member, Soil and Water Department, Khorasan Razavi Agricultural and Natural Resources Research and Training Center, AREEO, Mashhd, Iran
چکیده [English]

Soil tests play a very important role in management of nutrients in the field. Critical level of soil nutrient elements in a region is the basis of interpretation of the soil test for the same region. Therefore, these tests should be carried out in the soils of the target areas, so that the soil test could be used for fertilizer recommendation. Beans (Phaseolus vulgaris L.) with high protein content are an important crop that is cultivated in Markazi province. Due to the lack of information on phosphorus critical level and regional calibration, this study was conducted on soil under bean cultivation in Markazi province. Twenty-three soil surface samples (0-30 cm) were selected with wide range of soil properties and phosphorus concentration (extracted with Olsen method) from the different locations of the province and were prepared for greenhouse cultivation. Bean plant responses were investigated by application of two levels of phosphorus (0 and 50 mg kg-1 soil as mono calcium phosphate[H1] ) in greenhouse experiment. The study was conducted in factorial experiment as complete randomized design with three replications. At the end of vegetative period, the aboveground parts of plants were cut, and plant responses including, dry matter weight, phosphorus concentration, total phosphorus uptake, and relative yield were determined. Analysis of variance showed that the main effects and interaction of soil and phosphorus fertilizer were significant at 1% probability level for dry matter weight, phosphorus concentration and phosphorus uptake. The mean comparison of plant responses was significant as affected by phosphorus fertilizer consumption. By using Cate-Nelson graphic method, the critical level of phosphorus in soils was determined to be 13 mg kg-1.  Dry matter showed positive significant correlation with available phosphorus and organic carbon. The total phosphorous uptake showed a positive significant correlation with available phosphorous concentration, electrical conductivity, sand and organic carbon content, and a negative significant correlation with clay content.



 [H1]درچکیده فارسی  منبع دیگری نوشته شده کنترل فرمایید.

کلیدواژه‌ها [English]

  • Soil test
  • Calibration
  • Fertilizer recommendation
  1. ادهمی، ا.، و م. مفتون. ۱۳۸۴. اثر ماده آلی بر قابلیت جذب و شکل­های مختلف شیمیایی فسفر معدنی در خاک­های آهکی تخت دو رژیم رطوبتی ماندابی و غیر ماندابی، ششمین کنگره علوم خاک ایران. تهران.
  2. حکیم زاده اردکانی، م. و م. مفتون. 1378. ارزیابی روش­های شیمیایی مختلف جهت تعیین فسفر قابل استفاده در خاک­های آهکی ماندابی استان­های فارس و اصفهان . ششمین کنگره علوم خاک ایران. مشهد.
  3. حلاج نیا، ا.، غ. حق نیا، ا. فتوت، و ر. خراسانی. 1383. بررسی رفتار فسفر در برخی خاک­های آهکی دشت مشهد. مجموعه مقالات نهمین کنگره علوم خاک ایران. تهران.
  4. خودشناس، م. ع.، ج. قدبیک لو، و م. دادیور. 1396. حد بحرانی آهن برای لوبیا در استان مرکزی. مجله آب و خاک:31(4): 1158-1148.
  5. خودشناس، م. ع. و م. دادیور . 1384 . بررسی پراکنش وضعیت عناصر غذایی در خاک­های زیر کشت لوبیا استان مرکزی. مقالات اولین همایش ملی حبوبات. دانشگاه فردوسی مشهد.
  6. رضایی، ع.، ف. نواب، و ح. قرائی. ۱۳۸۴. اثر مقادیر مختلف کود فسفاتی و بذر بر عملکرد عدس دیم، نهمین کنگره علوم خاک ایران. تهران.
  7. قنبری ، ع.، م. مفتون، و ن. ع. کریمیان. 1378. تأثیر فسفر بر رشد و ترکیب شیمیایی ذرت در تعدادی از خاک­های آهکی استان فارس. ششمین کنگره علوم خاک ایران . دانشگاه فردوسی مشهد.
  8. ملکوتی، م. ج. و م. ن. غیبی. 1379. تعیین حد بحرانی عناصر غذایی مؤثر در خاک، گیاه و میوه. نشر آموزش کشاورزی. 92 صفحه.
  9. موسسه تحقیقات خاک و آب. 1379. راهنمای کالیبراسیون آزمون خاک جهت توصیه کودی. نشریه فنی شماره 1104.
  10. میرزاوند، ج. و م. مفتون . 1378 . ارزیابی گلخانه­ایی بر همکنش فسفر و روی بر رشد و ترکیب شیمیایی برنج در سه خاک آهکی و ماندابی در فارس. ششمین کنگره علوم خاک ایران . دانشگاه فردوسی مشهد.
  11. Abdi, N., B. L’taief, I. Hemissi, M. Bouraoui, H. Maazaoui, B. Sifi. 2014. Nitrogen and Phosphorus fertilization effect on Rhizobia-common bean symbiosis. Annales de l’INRAT, 2014, 87.
  12. Allison, L.E., and C.D. Moodie. 1965. Carbonate. p. 1379-1396. In C.A. Black (ed), Methods of Soil Analysis. Part 2. Am. Soc. Agron, Inc., Madison, Wis, USA.
  13. Anderson, J.M., and J.S.I. Ingram. 1989. a handbook of methods of analysis. CAB International, p39.
  14. Athokpam, H., K. Rabichandra, C. Nandini, S. Naorem, S. Athokpam, N. Gopimohan Singh, and P.T. Sharma. 2018. Critical Limits of Phosphorus in Relation to the Growth and Dry Matter Yield of French Bean (Phaseolus vulgaris L.) in Acid Soils of Thoubal District, Manipur (India). Int.J.Curr.Microbiol.App.Sci. 7: 1435-1444.
  15. Ayodele, O., and A. Agboola. 1982. An attempe to evaluate phosphorus fertilizer requirments of western Nigerai savanah soils. Fertilizer Res. 3: 293- 302.
  16. Bargaz, A., M. Faghire, N. Abdi, M. Farissi, B. Sifi, J. Drevon, M. Ikbal and C. Ghoulam. 2012.   Low soil phosphorus availability increase acid phosphatases activities and affects P partitioning in nodules , seeds and rhizosphere of pgaseolus vulgaris. Agriculture. 2, 139-153. Doi:10.3390/agriculture2020139.
  17. Blaylock, A.D. 1995. Nutrient management for dry bean production. University of Wyoming. Cooperative Extension Service. B-1016.
  18. Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54, 464-465.
  19. Brennan, R.F., M.D.A. Bolland, and K.H.M. Siddique. 2001. Response of cool-season grain legumes and wheat to soil applied zinc.j. Plant nutr. 24: 727-741.
  20. Campbell, C.R., and C.O. Plank. 1998. Preparation of plant tissue for laboratory analysis. P. 37–49.  In Kalra, Y. P. (ed),  Handbook of reference methods for plant analysis, Boca Raton Fl.:CRC Press.
  21. Cate, R.B.Jr, and L.A. Nelson. 1971. A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Sci. Soc. Am. Proc. 35: 658-660.
  22. Chapman, H.D. 1965. Cation- exchange capacity. p. 891-901. In C.A. Black (ed), Methods of Soil Analysis. Part 2. Am. Soc. Agron, Inc., Madison, Wis, USA.
  23. Chungqin, Z., F. Zhang, M. Daru, C. Zou, F. Zhang, and D. Mao. 1997. Effect of iron, nitrogen forms and shading on uptake and distribution of other nutrient elements in bean plant  J.Chian Agric. Univer. 2: 37-43.
  24. Fageria, N.K. 2001. Adequate and toxic levels of copper and manganese in upland rice, common bean, corn, soybean, and wheat grown on an Oxisol. Comun. Soil Sci. Plant anal. 32: 1659-1676.
  25. Franzen, D.W.,  and J. Morghan. 1995. Fertilizing pinto Navy and other dry edible bean. [online] Available: http:// www. ext. nodak. edu/extpubs/plantsci/soilfert/sf720.htm.
  26. Germida, J.J., and S.D.Sicidiano. 2000. Phosphorus, Sulfur and metal transformations. P. C95-C106. In M.E. Summer(ed.) Handbook of soil science. CRC. Press llc.
  27. Hmissi, I., N. Abdi, A. Bargaz, M. Bouraoui, Y. Mabrouk, M. Saidi, B. Sifi. 2015. Inoculation with Phosphate solubilizing Mezorhizobium strains improves the Performance of chickpea (Cicer aritenium L.) under Phosphorus deficiency. Journal of Plant Nutrition, 38, 1656-1671.
  28. Kouki, S., N. Abdi, I. Hemissi, M. Bouraoui, and B. Sifi. 2016. Phosphorus fertilization effect on common bean( phaseolus vulgaris L.). Rhizobia Symbiosis. Journal of New Sciences. 25(1). 1130- 1137.
  29. Lindsay, W.L, and W.A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil sci. Soc.Am.j. 42: 421-428.
  30. Malakouti M.J and Gheibi, M.N. 2000. Determining the critical limit for nutrients effective upon the soil, plants and fruits. Education and Human Resources Equipment Deputy, Karaj, Iran.
  31. Marx, E.S., j. Hart, and R.G. Stevens. 1999. Soil test interpretation guide. Oregan State University Service. Ec 1478.
  32. Mckenzie, R.H., A.B. Middleton, K.W. Seward, R.Gaudiel, C. Wildschut, and E. Breme. 2001. Fertilizer responses of dry bean in southern alberta. Can.j. Plant Sci. 81: 343- 350.
  33. Mourice S.K and Tryphone G.M. 2012. Evaluation of common bean( phaseolus vulgaris L.) genotypes for adaptation to low phosphorus. International scholarly research network. ISRN Agronomy. DOI: 10.5402/ 2012/309614.
  34. Olsen, S. R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular, Vol 939 (p. 19). Washington, DC US Department of Agriculture.
  35. Peech, M. 1965. Hydrogen ion activity. p. 914-925. In C.A. Black (ed), Methods of Soil Analysis. Part 2. Am. Soc. Agron, Inc., Madison, Wis, USA.
  36. Qian, P., J.J. Schoenau, and W.Z. Huang. 1992. Use of ion exchange membranes in routine soil testing. Commun. Soil Sci. plant Anal. 23: 1791-1804.
  37. Rashid, A.,  j. Din, and  M. Bashir. 1999. Phosphorus deficiency diagnosis and fertilization in mungbean grown in rainfed calcareous soils of pakistan. Commun. Soil Sci. Plant Anal. 30: 2045-2060.
  38. Rehm, G., M. Schmitt, and R. Eliason. 1997. Fertilizer recommendation for edible beans in Minnesota. University of Minnesota Extension Service. Fo-6572-Goo.
  39. Rhoades, J. D. 1996. Electrical Conductivity and Total Dissolved Solids. P.417-436. In J. M. Bigham(ed.). Methods of Soil Analysis. Madison, Wisconsin, USA.
  40. Sharpley, A. 2000.  Phosphorus availability . P. D18-D38. In M.E. Sumner (ed.) Handbook of science. CRC press llc.
  41. Sharpley, A.N., H. Tiessen , and C.V. Cole. 1987. Soil phosphorus forms extracted by soil tests as a function of red agenesis . Soil Sci. Soc. Am.J. 51 : 362-365.
  42. Stewart, J.W.B., A.N.Sharpley. 1987. Controls on dynamics of soil and fertilizer phosphorus and sulfur. P. 101-121. In R.F. Follett, J.W.B.Stewart, and C.V cole (eds.) Soil fertility and organic mater as critical components of production systems. Soil Sci. Soc. Am. Spec. Pub. 19, soil science society of America, Madison, WI.
  43. Sims, T.J. 2000. Soil fertility evaluation. P.D113-D153. In M.E. Sumner (ed.) Handbook of soil science. CRC press llc.
  44. Tisdal, S.L., W.L. Nelson, and J.D. Beaton. 1985. Soil fertility and fertilizers. 4 th.ed., Mc Millan  Publishing co., New York, NY.
  45. Walkley, A. and I.A. Black. 1934. An Examination of Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 37:29-37.
  46. Watham, L., H. Athokpam, N. Chongtham, K. Devi, N. Brajendra Singh, N. Gopimohan Singh,  P.T. Sharma, and P. Heisnam. 2018. Phosphorus Status in the Soils of Imphal West District, Manipur (India).Int.J.Curr.Microbiol.App.Sci 7: 3871-3877.