بررسی تأثیر کاه و کلش گندم بر هدررفت خاک ناشی از فرسایش شیاری در ردیف‌های کشت در مراحل مختلف رشد گندم دیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

2 دانشجوی کارشناسی ارشد گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

چکیده

کشت­زارهای دیم واقع در اراضی شیب­دار تحت انواع فرسایش آبی به‌ویژه فرسایش شیاری قرار دارند. شدت فرسایش شیاری در مراحل مختلف رشد گیاه تغییر پیدا می­کند. این پژوهش به‌منظور بررسی تأثیر کاه و کلش گندم بر مقدار هدررفت خاک ناشی از فرسایش شیاری در مراحل رشد گندم دیم انجام گرفت. آزمایش صحرایی در کشت­زار دیم با شیب 10 درصد با هفت سطح کاه و کلش گندم (صفر، 25، 50، 75، 100، 125 و 150 درصد پوشش سطح) در قالب طرح بلوک کامل تصادفی با سه تکرار انجام شد. زمین به موازات شیب شخم زده شد و مقادیر مختلف کاه و کلش به‌طور جداگانه با خاک مخلوط شدند. مصرف مالچ در تیمار 100 درصد برابر با 5/0 کیلوگرم در هر متر مربع بود. شیارها[H1] یی مستقیم به­عرض 20 سانتی­متر و به طول 10 متر در سه تکرار برای هر سطح مالچ به وسیله دستگاه کشت مشابه با جویچههای کشت گندم دیم ایجاد شد. فرسایش شیاری در پنج مرحله رشد گندم (کاشت، سبز شدن، پنجه­زنی، ساقه­روی و خوشه­دهی) با استفاده از جریانی با دبی 2 لیتر بر دقیقه اندازه‌گیری شد. هدررفت خاک ناشی از فرسایش شیاری در تیمارهای مصرف کاه و کلش تحت تأثیر مرحله رشد گندم قرار گرفت (05/0>P). هدررفت خاک ناشی از فرسایش شیاری در تیمار 100 درصد مصرف کاه و کلش در تمام مراحل رشد کمترین بود و به‌طور متوسط به اندازه 79[H2]  درصد کمتر از تیمار شاهد بود. بین تیمار 100 درصد کاه و کلش گندم با سطوح بالاتر کاه و کلش (125 و 150 درصد پوشش سطح) تفاوتی معنی­دار از نظر شدت فرسایش شیاری یافت نشد. در هر هفت سطح کاه و کلش گندم مرحله سبز شدن حساس­ترین مرحله رشد بین کل مراحل رشد به فرسایش شیاری بود. این نتیجه به‌دلیل ضعف پوشش گیاهی و رطوبت بالای خاک در این مرحله بود. در این مرحله از رشد مصرف 100 درصد کاه و کلش معادل با 5 تن در هکتار منجر به کاهش حدود 71 درصد فرسایش شیاری (009/0 گرم بر متر مربع بر ثانیه یا 34/0 تن در هکتار در هر رخداد باران یک ساعتی) در جویچه­های کشت شد.



 [H1]شیار یا نوار؟ شیار عمق دارد. لطفا مشخص کنید. کلمه شیارکشت یا ردیف کشت درست است.




 [H2]در متن انگلیسی 75% نوشته شده. کدام درست است؟ در متن انگلیسی اصلاح شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Wheat Straw on Soil Loss by Rill Erosion in Furrows in Different Growth Stages of Rainfed Wheat

نویسندگان [English]

  • alireza vaezi 1
  • M Heidari 2
1 Full Professor, Dept. of Soil Science, Faculty of Agriculture, University of Zanjan, Iran
2 MSc Student, Dept. of Soil Science, Faculty of Agriculture, University of Zanjan, Iran
چکیده [English]

Rainfed lands located on slopes are subjected to higher water erosion types, particularly rill erosion. Rill erosion rate can be varied in various growth stages. This study was carried out to find the effect of wheat straw on soil loss resulting from rill erosion in wheat growth stages. A field experiment was done in rainfed wheat land with 10% slope and seven wheat straw levels (0, 25, 50, 75, 100, 125 and 150% of ground cover), using the randomized complete block design with three replications. The land was plowed down slope and various straw amounts were separately incorporated into the soil. A 0.5 kg wheat straw per square meter was used in the 100% straw level. Three rills/furrows with 20-cm width and 10-m length were installed by the the planter machine similare to cultivation furrows for each straw level and rill erosion measurements were done using a discharge flow of 2 L.min-1 at five growth stages (planting, emergence, tillering, stem elongation, grain filling ). Based on the results, soil loss by rill erosion was significantly affected by straw amount (P< 0.05). Soil loss by rill erosion in 100% straw level was the lowest amount at all wheat growth stages and was about 79% [H1] lower than that in the control treatment. There was no significant difference between this treatment and higher straw levels (150% and 125% ground cover) in rill erosion. The emergence stage in each straw level, which was associated with poor vegetation cover and higher soil water content in this period, was the most susceptible stage in the rill erosion among all growing stages. In this stage, application of 100% wheat straw equal to 5 ton per hectare could decrease rill erosion by 71% (0.009 g m-2 equal to 0.34 ton per hectare for each 1-h rainfall event) in the cultivated furrows.



 [H1]در متن فارسی 79% نوشته شده. کدام درست اشت؟
اصلاح شد.

کلیدواژه‌ها [English]

  • Vegetation cover
  • Wheat growth
  • Soil moisture
  1. امامی، ی. 1386. زراعت غلات. ویرایش سوم. انتشارات دانشگاه شیراز. 190 صفحه.
  2. بیات­موحد، ف. نیکامی، د. و شامی، ح. 1389. بررسی راهکارهای کاهنده فرسایش خاک اراضی دیم. مجله مهندسی و مدیریت آبخیز، 1(4): 275-279.
  3. بیات موحد، ف.، د. نیک­کامی، م. تکاسی و پ. مرادی.1390. بررسی اثر کاربرد مالچ کاه و کلش گندم بر هدررفت خاک و مواد آلی در اراضی دیم شیب­دار. مجله مهندسی و مدیریت آبخیز، 3(4):223.
  4. زرین­آبادی، ا. 1393. فرسایش خاک و عملکرد گندم تحت تأثیر جهت شخم در شیب در درجه­های مختلف. پایان نامه ارشد، دانشکده کشاورزی، دانشگاه زنجان.
  5. عادل­پور، ع.، م. صوفی، و ع.ک. بهنیا. 1385. بررسی تأثیر کاه و کلش های دیم بر حفاظت خاک در مناطق خشک و نیمه خشک جنوبی ایران 13(2): 57-50.
  6. صادقی، س.ح.ر.، ا. شریفی­مقدم و ل. غلامی. 1393. اثر کاه و کلش برنج بر تولید رواناب سطحی و هدررفت خاک در کرت های کوچک. نشریه حفاظت منابع آب و خاک 3(4): 82-73.
  7. فطری،م.، م.الف. قبادی، م. قبادی، و غ.ر. محمدی. 1395. اثر عمق کاشت و مالچ بر ظرفیت نگهداری رطوبت خاک درمراحل مختلف رشد نخود تحت شرایط دیم. نشریه پژوهشهای حبوبات ایران، 7(1): 144-135.
  8. واعظی، ع. و ح. قره داغلی. 1392. کمی­سازی گسترش فرسایش شیاری در خاک­های مارنی در حوزه آبخیز زنجان­رود در شمال غرب زنجان. نشریه آب و خاک (علوم و صنایع کشاورزی)، 27(5: 881-871.
  9. واعظی، ع.ر.، ح.ع. بهرامی، ح.م. صادقی، و م.ح. مهدیان. 1387. تغییرات مکانی رواناب در بخشی از خاک­های آهکی ناحیه نیمه خشک در شمال غربی ایران. علوم کشاورزی و منابع طبیعی. 15(5): 225-213.
  10. وزارت جهاد کشاورزی. 1395. آمارنامه کشاورزی سال زراعی 94-1393. جلد اول: محصولات زراعی. معاونت برنامه­ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات. 163 صفحه.
  11. Bouajila, A. and T. Gallali. 2008. Soil organic carbon fractions and aggregate stability in carbonated and no carbonated soils in Tunisia. J. Agron. 7(2):127-137.
  12. Cantalice, J.R.B., F.P.M. Silveira, V.P. Singh, Y.J.A.B. Silva, D.M. Cavalcante, and C. Gomes. 2017. Interrill erosion and roughness parameters of vegetation in rangelands. Catena 148:111-116.
  13. Casermeiro, M.A., J.A. Molina, M.T. Delacruz Caravaca, M.I. Hernando Massanet, and P.S. Moreno. 2004. Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate. Catena 57:97-107.
  14. Cerda, A. 1999. Parent material and vegetation affect soil erosion in eastern Spain. Soil Sci. Soc. Am. J. 63:362-368
  15. Chartier. M., C. Rostagno, and L. Videla. 2013. Selective erosion of clay, organic carbon and total nitrogen in grazed semiarid rangelands of northeastern Patagonia, Argentina. Journal of Arid Environments. 88:43-49.
  16. Dahiya, R., J. Ingwersen, and Streck, T. 2007. The effect of mulching and tillage on the water and temperature regimes of a loess soil: experimental findings and modeling. Soil and Tillage Res. 96(1-2):52-63……
  17. Day, P.R. 1965. Particle fractionation and particle-size analysis. Methods of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling. (methods of soil analyze). 545-567….
  18. De Baets, S. and J. Poesen. 2010. Empirical models for predicting the erosion-reducing effects of plant roots during concentrated flow erosion. Geomorphology. 118(3-4):425-432.
  19. Donjadee, S. and T. Tingsanchali. 2016. Soil and water conservation on steep slopes by mulching using rice straw and vetiver grass clippings. Agri. Natural Reso. 50(1):75-79.
  20. Dunjo, G., G. Pardini, and M. Gispert. 2004. The role of land use-land cover on runoff generation and sediment yield at a microplot scale, in a small Mediterranean catchment. J. Arid Environ. 57:99-116.
  21. FAO. 2006. Guidelines for Soil Descriptions, Food and Agriculture Organization of the United Nations.
  22. Fasching, R.A. and J.W. Bauder. 2001. Evaluation of agricultural sediment load reductions using vegetative filter strips of cool season grasses. Water Environ. Res. 73(5):590-596.
  23. Foster, G.R. 1982. Modeling the erosion process, in Hydrologic Modeling of Small Watersheds, Am. Soc. Agric. Eng. Monogr., vol. 5, edited by C.T. Haan, H.P. Johnson, and D.L. Brakensiek, pp. 297–380, Am. Soc. Agric. Eng., St. Joseph, Mich.
  24. Gee, G.W. and J.W. Bauder. 1986. Particle-size analysis. In A. Klute (Ed.). Methods of Soil Analysis: Part.I. Physical and mineralogical methods (2nd ed.). Agron. Monog. 9:383-411.
  25. Ghahramani, A., Y. Ishikawa, T. Gomi, K. Shiraki, and S. Miyata. 2011. Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: A plot-scale study. Catena 85:34–47.
  26. Giménez, R. and G. Govers. 2008. Effects of freshly incorporated straw residue on rill erosion and hydraulics. Catena 72(2):214-223.
  27. Guenet, B., C. Neill, G. Bardoun, and L. Abbadie. 2010. Is there a liner relationship between priming effect intensity and the amount of organic matter input? Applied Soil Ecol. 49:436-442.
  28. Gyssels, G., J. Poesen, E. Bochet, and Y. Li. 2005. Impact of plant roots on the resistance of soils to erosion by water: Are view. Prog. Phys. Geog. 29:189-217.
  29. Le Bissonnais, Y., B. Renaux, and H. Delouche. 1995. Interactions between soil properties and moisture content in crust formation, runoff and interrill erosion from tilled loess soils. Catena. 25:33–46.
  30. Li, J., F. Zhang, S. Wang, and M. Yang. 2015. Combined influences of wheat-seedling cover and antecedent soil moisture on sheet erosion in small-flumes. Soil and Tillage Res. 151:1-8.
  31. Morgan, R.P.C. 2005. Soil erosion and Conservation, Third edition, Blach Well Publishing Ltd 13:200-210.
  32. Nzeyimana, I., A.E. Hartemink, C. Ritsema, L. Stroosnijder, E.H. Lwanga, and V. Geissen, 2017. Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena 149:43-51.
  33. Sachs, E. and P. Sarah. 2017. Effect of raindrop temperatures on soil runoff and erosion in dry and wet soils. A laboratory experiment. Land Degrad. Dev. 28(5):1549-1556.
  34. Sadusky, M.C., D.L. Sparks, M.R. Noll, and G.J. Hendricks. 1987. Kinetics and mechanisms of potassium release from sandy Middle Atlantic Coastal Plain soils. Soil Sci. Soc. Am. J. 51(6):1460-1465.
  35. Sun, L., G.H. Zhang, F. Liu, and L.L. Luan. 2016. Effects of incorporated plant litter on soil resistance to flowing water erosion in the Loess Plateau of China. Biosys. Engr. 147:238-247.
  36. Tian, P., X. Xu, C. Pan, K. Hsu, and T. Yang, 2017. Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes. J. Hydrol. 548:24-39.
  37. Vermang, J., V. Demeyer, W.M. Cornelis, and D. Gabriels. 2009. Aggregate stability and erosion response to antecedent water content of a loess. Soil Sci. Soc. Am. J. 73(3):718–726.
  38. Walkley, A. and I.A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29-38.
  39. Wildhaber, Y.S., D. Bänninger, K. Burri, and C. Alewell. 2012. Evaluation and application of a portable rainfall simulator on subalpine grassland. Catena 9:56-62.
  40. Wirtz, S., M. Seeger, A. Remke, R. Wengel, J.F. Wagner, and J.B. Ries. 2013. Do deterministic sediment detachment and transport equations adequately represent the process-interactions in eroding rills? An experimental field study. Catena 101:61–78.
  41. Wischmeier, W.H. and D.D. Smith. 1978.  Predicting rainfall erosion losses: A guide to conservation planning, Agric. Handbk., 537, U.S.Dep.of Agricultural Science and Educational Administration, Washington, D. C.
  42. Yoder, R.E. 1936. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Agron. J. 28(5):337-351.
  43. Yu, Y.C., G.H. Zhang, R. Geng, and L. Sun. 2014. Temporal variation in soil detachment capacity by overland flow under four typical crops in the Loess Plateau of China. Biosys. Engr. 122:139-148.