اثر ریزوسفر گندم بر شکل‏های شیمیایی فسفر در تعدادی از خاک‌های آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه شهرکرد

2 استاد دانشگاه شهرکرد

چکیده

شرایط شیمیایی و بیولوژیکی خاک­های ریزوسفری متفاوت از توده خاک است. این امر منجر­به تغییر قابلیت استفاده عناصر غذایی در خاک­های ریزوسفری می­شود. فسفر یکی از عناصر غذایی محدو کننده رشد گیاهان در مناطق خشک می­باشد. هدف ازاین تحقیق بررسی وضعیت جزءبندی فسفر معدنی، فسفر آلی، فعالیت آنزیم­های فسفاتاز اسیدی (AcP)، فسفاتاز قلیایی(AlP)، فسفر زیست توده میکروبی (MBP) و کربن آلی محلول (DOC) در خاک­های ریزوسفری و توده در 10 خاک آهکی در کشت گندم در ریزوباکس بود. بدین منظور شکل­های مختلف فسفر شامل فسفر پیوند شده به اکسیدهای آهن و آلومینیوم (NaOH+CB]-Pi])، فسفر مسدود شده در اکسیدهای آهن (CBD-Pi)، فسفر مرتبط با کلسیم (Ca-Pi)، و فسفر باقیمانده به روش تصحیح شده عصاره‏گیری مرحله­ای اولسن و سامرز تعیین شدند. نتایج نشان داد که فعالیت آنزیم­های فسفاتاز، MBP و DOC در خاک­های ریزوسفری نسبت به خاک­های توده افزایش یافت. همچنین، توزیع جزءهای معدنی فسفر بین خاک­های ریزوسفری و توده متفاوت بود. نتایج نشان داد که فراوانی جزءهای فسفر در خاک­های ریزوسفری و توده به صورت زیر کاهش یافت Ca-Pi>residual-P>Po>NaOH+CB]-Pi] >CBD-Pi. مازاد براین، نتایج مطالعه همبستگی نشان داد که شاخص­های گندم همبستگی معنی‏داری با جزءهای iNaOH+CB]-P]، CBD-Pi، MBP و AlP در خاک­های ریزوسفری داشتند. نتایج نشان داد که جزءهای فسفر در خاک­های ریزوسفری تغییر کرده اما تبدیلات داخلی جزءهای مختلف و مکانیسم­های درگیر به خوبی مشخص نبودند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Wheat Rhizosphere on Chemical Forms of Phosphorus in Some Calcareous Soils

نویسندگان [English]

  • T. Raiesi 1
  • A. R. Hosseinpur 2
1 PhD student of Shahrekord University
2 Professor, Shahrekord University
چکیده [English]

The chemical and biological conditions in the rhizosphere can be different from those in bulk soil. This could alter the quality of the diagnosis of nutrient bioavailability. Phosphorus (P) is one of the primary limiting factors of plant growth in arid areas. The objective of this research was to study the status of various inorganic phosphorus (Pi) fractions, organic phosphorus (Po), acid and alkaline phosphatase enzymes (AcP and AlP, respectively), microbial biomass phosphorus (MBP), and dissolved organic carbon (DOC) in the rhizosphere and the bulk soils of wheat plant growing in 10 calcareous soils in a rhizobox experiment. Thus, P fractions, including P absorbed by Al and Fe oxides (]NaOH+CB]-Pi), occluded P (CBD-Pi), P bounded by Ca (Ca-Pi), and residual P were determined by modified Olsen and Sommers' sequential fractionation procedure. The results showed that phosphatase activities, MBP, and DOC strongly increased in the rhizosphere soils compared with the bulk soils. Also, the pattern of distribution of the Pi fractions differed between the rhizosphere and the bulk soils. The results showed that the amount of the various P fractions in the rhizosphere and the bulk soils decreased in the following order: Ca-Pi> residual-P> organic P>]NaOH+CB[-Pi> CBD-Pi. Simple correlation coefficients showed that plant indices had positive relationship with ]NaOH+CB[-Pi, CBD-Pi fractions, MBP, and AlP in the rhizosphere soils (P≤0.05). The results indicated that P in the rhizosphere was concomitantly modified but the inner-conversion of different fractions and the mechanisms involved were less clear.

  1. خوشگفتارمنش، ا.ح. 1385. ارزیابی وضعیت تغذیه­ای گیاه و مدیریت بهینه کودی. مرکز نشر دانشگاه صنعتی اصفهان، اصفهان.
  2. زارع­نیا، م. 1390. ارزیابی عصار­گیرهای شیمیایی مختلف برای تعیین پتاسیم قابل اتفاده لوبیا چیتی در برخی از خاک­های استان چهارمحال و بختیاری. پایان­نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شهرکرد.
  3. سمواتی، م. و حسین­پور،ع. 1390. اجزای مختلف فسفر معدنی و قابلیت فراهمی آن در تعدادی از خاک­های استان همدان. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، 15: 127-137.
  4. Agbenin J.O., and T. Adeniyi. 2005. The microbial biomass properties of a savanna soil under improved grass and legume pastures in northern Nigeria. Agric Ecosyst Environ. 109: 245–254.
  5. AraujoMaria, S.B., C.E.R. Schaefer, and E.V.S. Sampaio. 2004. Soil phosphorus fractions from toposequences of semi-arid Latosols and Luvisols in northeastern Brazil. Geoderma, 119: 309–321.
  6. Beck, M.A., and P.A. Sanchez. 1994. Soil phosphorus fraction dynamics during 18 years of cultivation on a Typic Paleudult. Soil Sci. Soc. Am. J. 58: 1424–1431.
  7. Brookes, P.C., D.S. Powlson, and D.S. Jenkinson. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 14: 319-329.
  8. Chang, S.C., and M.L. Jackson. 1957. Fractionation of soil phosphorus. Soil Sci. 84: 133–144.
  9. Chen, H. 2003. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. Forest Ecol. Manag. 178: 301–310.
  10. Chen, C.R., and L.M. Condron, M.R. Davis, and R.R. Sherlock. 2002. Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.). Soil Biol. Biochem. 34: 487-499.
  11. Delgado, A., J.R. Ruiz, M.D. Del Campillo, S. Kassem, and L. Andreu. 2000. Calcium- and iron-related phosphorus in calcareous and calcareous marsh soils: Sequential chemical fractionation and P-31 nuclear magnetic resonance study. Commun. Soil Sci. Plant Anal. 31: 2483-2499.
  12. Eivazi, F., and M. A. Tahatahai. 1977. Phosphatase in soils. Soil Biol. Biochem. 9: 167-172.
  13. Gee, G.H., and J.W. Bauder. 1986. Particle size analysis. In: A. Klute (ed.) Methods of Soil Analysis. Part 2 physical properties. SSSA, Madison, WI.
  14. George, T.S., P.J. Gregory, M. Wood, D. Read, and R.J. Buresh. 2002. Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize. Soil Biol. Biochem. 34: 1487-1494.
  15. Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil, 237:173–195
  16. Kuo, S. 1996. Phosphorus. In: D.L. Sparks (ed.) Methods of Soil Analysis. Part 3 chemical methods. SSSA, Madison, WI.
  17. Larsen, S. 1967.Soil phosphorus. Adv. Agron. 19: 151–210.
  18. Loeppert, R.H., and D.L. Sparks. 1996. Carbonate and gypsum. In: D.L. Sparks (ed.) Methods of Soil Analysis. Part 3 chemical methods. SSSA Madison WI.
  19. Marschner, P., Z. Solaiman, and Z. Rengel. 2007. Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biol. Biochem.39: 87-98.
  20. Marschner, P., Z. Solaiman, and Z. Rengel. 2005. Growth phosphorus uptake and rhizosphere microbial community composition of a phosphorus-efficient wheat cultivar in soils differing in pH. Journal of J. Plant Nutr. Soil Sc. 168: 343-351.
  21. McKenzir, R.H., J.F. Dormaar, G.B. Schaalje, and J.W.B. Stewart. 1995. Chemical and biological change in the rhizosphere of wheat and canola. Can. J. of Soil Sci. 75:439-447.
  22. Mostashari, M., M. Muazardalan, N. Karimian, H.M. Hosseini, and H. Rezai. 2008. Phosphorus fractions of selected Calcareous soils of Qazvin province and their relationships with soil characteristics. American-Eurasian. J. Agric. Environ. Sci. 547-553
  23. Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta. 27:31-36.
  24. Nelson, D.W., and L.E. Summers. 1996. Total carbon organic carbon and organic matter. In: D.L. Sparks (ed.) Methods of Soil Analysis. Part 3 chemical methods. SSSA Madison WI.
  25. Nuruzzaman, M., H. Lambers, M.D.A. Bolland, and E.J. Veneklaas. 2006. Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes. Plant Soil, 281: 109-12.
  26. Olsen, S.R., and L.E. Sommers. 1982. Phosphorus. In A. Klute (Ed.), Methods of Soil Analysis. Part1 ‌‌chemical and biological properties. SSSA, Madison, Wisconsin, USA.
  27. Rhoades, J.D. 1996. Salinity: electrical conductivity and total dissolved solids. In: D.L. Sparks (ed.) Methods of Soil Analysis. Part 3 chemical methods. SSSA, Medison, WI.
  28. Rose, T.J., B. Hardiputra, and Z. Rengel. 2010. Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant Soil, 326: 159–170.
  29. Ryan, J., D. Curtin, and M.A. Cheema.1985. Significance of iron oxides and calcium carbonate particle size in phosphate sorption by calcareous soils. Soil Sci. Soc. Am. J.49: 74-76.
  30. Safari Sinegani, A.A., and T. Rashidi. 2011. Changes in phosphorus fractions in the rhizosphere of some crop species under glasshouse conditions.J. Plant Nutr. Soil Sci. 2011, 174,899–907
  31. Shaheen, S.M., Ch.D. Tsadilas, and S. Stamatiadis. 2007. Inorganic phosphorus forms in some entisols and aridisols of Egypt. Geoderma, 142: 217–225.
  32. StatSoft, Inc. 2010. STATISTICA (data analysis software system), Version 10. www. Statsoft.com.
  33. Sumner, M.E. and W.P. Miller. 1996. Cation exchange capacity and exchange coefficient. In: D.L. Sparks (ed.) Methods of Soil Analysis. Part 3 chemical methods. SSSA Madison WI.
  34. Tabatabai, M.A., and J.M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301-307.
  35. Tarafdar, J.C., and A. Jungk. 1987. Phosphatase activity in the rhizosphereand its relation to the depletion of soil organic phosphorus. Biol Fertil Soil 3:199-204.
  36. Thomas, G.W.1996. Soil pH and soil acidity. In: D.L. Sparks (ed.) Methods of Soil Analysis. Part 3 chemical methods. SSSA Madison WI.
  37. Uren, N.C. 2007. Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: R. Pinton, Z. Varanini and P. Nannipieri (2rd ed.), The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface. CRC Press.
  38. Vu, D.T., C. Tang, and R.D. Armstrong. 2008. Changes and availability of P fractions following 65 years of P application to a calcareous soil in a Mediterranean climate. Plant Soil, 304: 21-33.
  39. Wang, X., C. Tang, C.N. Guppy, and P.W.G. Sale. 2008. Phosphorus acquisition characteristics of cotton (Gossypium hirsutum L.) wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions. Plant Soil, 312: 117–128.
  40. Youssef, R.A. and M. Chino. 1988. Development of a new rhizobox system to study the nutrient status in the rhizosphere. Soil Sci. Plant Nutr. 34: 461–465.
  41. Yu, S., Z.L. He, P.J. Stoffella, D.V. Calvert, X.E. Yang, D.J. Banks, and V.C. Baligan.2006. Surface runoff phosphorus (P) loss in relation to phosphatesactivity and soil P fractions in Florida sandy soils under citrus production. Soil Biol. Biochem., 38: 619–628.
  42. Zoysa, A.K.N., P. Loganathan, and M.J. Hedley. 1999. Phosphorus utilisation efficiency and depletion of phosphate fractions in the rhizosphere of three tea (Camellia sinensis L.) clones. Nutr. Cycl. Agroecosys.53: 189–201.