ارزیابی برخی مدل‌های انقباض در خاک‌های آماس‌پذیر در دشت زرین استان چهارمحال و بختیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشگاه شهرکرد

2 استادیار دانشگاه شهرکرد

3 استادیار دانشگاه رامین اهواز

4 استادیار دانشگاه ارومیه

5 دانشجوی سابق کارشناسی ارشد گروه خاکشناسی دانشکده کشاورزی دانشگاه رامین اهواز

چکیده

حجم خاک‌های ورتی‌سول با تغییر رطوبت، تغییر کرده و موجب دگرگونی آرایش خلل و فرج خاک می‌گردد. منحنی انقباض، میزان تغییر تخلخل خاک را در اثر کاهش رطوبت خاک نشان می‌دهد. به‌منظور کمّی‌سازی این منحنی، مدل‌های زیادی ارائه شده است. هدف از این پژوهش، ارزیابی مدل‌های مک‌گری و مالافنت، گرانولت و گرنت، پنگ و هورن و کورنلیس و همکاران در برآورد منحنی انقباض برخی خاک‌های آماس‌پذیر دشت زرین واقع در استان چهارمحال و بختیاری بود. بدین منظور، 35 نمونه خاک از منطقه موردنظر به گونه‌ای انتخاب شد که دامنه‌ای وسیع از انقباض خاک را پوشش دهند. منحنی انقباض خاک‌ها به وسیله دستگاه صفحات فشاری اندازه‌گیری شد. مدل‌های یادشده به داده‌های اندازه‌گیری‌شده برازش داده شد. سپس کارآیی هر یک از مدل‌ها در برآورد منحنی انقباض خاک با استفاده از آماره‌های ریشه میانگین مربعات خطا[1]، میانگین خطا[2]، قدرمطلق میانگین خطا[3] وشاخص اطلاعاتی آکایکه[4] ارزیابی شد. همچنین احتمال صحیح بودن مدل با کمترین AIC محاسبه شد. نتایج نشان داد مدل‌های یادشده قادر به بیان بخش اعظمی از تغییرات منحنی انقباض در خاک‌های مورد مطالعه بوده‌اند. با این وجود، مدل گرانولت و گرنت، با AIC برابر با 29/57- و مقادیر RMSE، ME و AME به ترتیب 00052/0، 00122/0- و 0054/0 سانتی‌متر مکعب بر سانتی‌متر مکعب در مقایسه با سایر مدل‌ها کارآیی بیشتری در برآورد منحنی انقباض این خاک‌ها داشت. بر این اساس، مدل مک‌گری و مالافنت با AIC برابر با 82/48- و RMSE، AME و ME به ترتیب برابر با 0122/0، 0101/0 و 00342/0 سانتی‌متر مکعب بر سانتی‌متر مکعب عملکرد پایینی برای برآورد منحنی انقباض این خاک‌ها نشان داد. بنابراین جهت برآورد منحنی انقباض در خاک‌های آماس‌پذیر این منطقه، استفاده از مدل گرانولت و گرنت پیشنهاد می‌شود.



[1]. RMSE


[2]. ME


[3]. AME


[4]. AIC

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Some Shrinkage Models in Swelling Soils of Zarrin Plain in Chaharmahal and Bakhtiari Province

نویسندگان [English]

  • A. Saed 1
  • S. Ghorbani Dashtaki 2
  • B. Khalili Moghaddam 3
  • H. Khodaverdiloo 4
  • F. Moradi 5
1 MSc student, Shahrekord University
2 Assistant Professor, Shahrekord University
3 Assistant Professor, Khuzestan Ramin University
4 Assistant Professor, Urmia University
5 Department of Soil Science, Ramin Ahvaz University
چکیده [English]

Volume of vertisols changes by variation in soil water content and it causes re-arrangement of soil pores. Shrinkage curve shows the relation between soil porosity and soil moisture. Many models are presented to quantify shrinkage curve. The objective of this study was to evaluate McGarry and Malafant, Groenevelt and Grant, Peng and Horn, and Cornelis et al models for estimating shrinkage curve of some swelling soils of Dashte Zarrin, Chaharmahal-o- Bakhtiari province, Iran. Therefore, 35 soil samples were randomly selected from 0-30 cm depth of the selected site. Soil shrinkage curves were measured using pressure plate apparatus. The mentioned models were fitted to the measured shrinkage curve data. Then, performance of the models was evaluated using root of mean square error (RMSE), mean error (ME), absolute value of mean error (AME) and Akaike information criterion (AIC). Results showed that the models could describe most parts of the variation of shrinkage curve in the study soils. However, Groenevelt and Grant model with the AIC equal to -57.29, RMSE of 0.00052 cm3.cm-3, ME of -0.00122 cm3.cm-3, and AME equal to 0.0054 cm3.cm-3 was the best model. McGarry and Malafant model had the lowest performance, with AIC equal to -48.82 and RMSE, ME and AME values equal to 0.0122, 0.00342 and 0.0101 cm3.cm-3, respectively. Thus, for predicting the soils shrinkage curve of the study site, application of  Groenevelt and Grant model is suggested. 

کلیدواژه‌ها [English]

  • Cornelis et al model
  • Groenevelt and Grant model
  • McGarry and Malafant model
  • Peng and Horn model
  • Shrinkage curve
  1. بهمنی م. 1388. مقایسه ویژگی‌های کانی‌شناسی خاک‌های کلسی‌سول و ورتی‌سول استان‌های اصفهان و چهارمحال و بختیاری و ارتباط آنها با وضعیت پتاسیم. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه شهرکرد.
  2. سرشوق م. 1388. اثر جهت و موقعیت شیب بر تعدادی از ویژگی‌های مورفولوژی، فیزیکی، شیمیایی و کانی‌شناسی خاک‌های منطقه چلگرد استان چهارمحال و بختیاری. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه شهرکرد.
  3. Bagarello V. Iovino M. 2012. Testing the BEST procedure to estimate the soil water retention curve. Geoderma 187-188:67-76.
  4. Bensallam S. Bahi L. Ejjaaouani H. and Shakhirev V. 2012. A new shrinkage curve model, applied to Moroccan clayey soil. International Journal of Geosciences 3:507-514.
  5. Braudeau E. Costantini J.M. Bellier G. and Colleuille H. 1999. New device and method for soil shrinkage curve measurement and characterization. Soil Science Society of America Journal 63:525–535.
  6. Bronswijk J.J.B. 1991. Relation between vertical soil movements and water-content changes in cracking clays. Soil Science Society of America Journal 55:1220–1226.
  7. Chertkov V.Y. 2000. Modeling the pore structure and shrinkage curve of soil clay matrix. Geoderma 95:215–246.
  8. Chertkov V.Y. 2003. Modelling the shrinkage curve of soil clay pastes. Geoderma 112:71–95.
  9. Cornelis W.M. Corluy J. Medina H. Hartmann R. Van Meirvenne M. and Ruiz M.E. 2006a. A simplified parametric model to describe the magnitude and geometry of soil shrinkage. Europian Journal of Soil Science 57:258–268.
  10. Cornelis W.M. Corluy J. Medina H. Diaz J. Hartmann R. Van Meirvenne M. and Ruiz M.E. 2006b. Measuring and modelling the soil shrinkage characteristic curve. Geoderma 137:179–191.
  11. Crescimanno D. Santis A.D. and Provenzano G. 2007. Soil structure and bypass flow processes in a Vertisol under sprinkler and drip irrigation. Geoderma 138:110–118.
  12. Dasog G.S. Acton D.F. Mermut A.R. and De Jong E. 1988. Shrink-swell potential and cracking in clay soils of Saskatchewan. Canadian Journal of Soil Science 68:251-260.
  13. Garnier P. Rieu M. Boivin P. Vauclin M. and Bveye P. 1997. Determining the hydraulic properties of a swelling soil from a transient evaporationexperiment. Soil Scinece Society of America Journal 61: 1555-1563.
  14. Giraldez J.V. Sposito G. and Delgado C. 1983. A general soil volume change equation I: The two-parameter model. Soil Science Society of America Journal 47:419–422.
  15. Groenevelt P.H. and Grant C.D. 2001. Re-evaluation of the structural properties of some British swelling soils. European Journal of Soil Science 52:469–477.
  16. Groenevelt P.H. and Grant C.D. 2002. Curvature of shrinkage lines in relation to the consistency and structure of a Norwegian clay soil. Geoderma 106:235–245.
  17. Groenevelt P.H. and Grant C.D. 2004. Analysis of soil shrinkage data. Soil and Tillage Research 79: 71–77.
  18. Haines W.B. 1923. The volume changes associated with variations of water content in soil. Journal of Agricultural Science Cambridge 13:293–310.
  19. Heidari A. Mahmoodi Sh. Roozitalab M.H. and Mermut A.R. 2008. Diversity of Clay Minerals in the Vertisols of Three Different Climatic Regions in Western Iran. Journal of Agricultural Science Technology 10:269–284.
  20. Kim D.J. Vereecken H. Feyen J. Boels D. and Bronswijk J.J.B. 1992. On the characterization of properties of an unripe marine clay soil. 1. Shrinkage processes of an unripe marine clay soil in relation to physical ripening. Soil Science 153:471–481.
  21. Kutilek M. 1996. Water retentions and water management of Vertisols. In: N. Ahmad and A. Mermut (Ed.), Vertisols and technologies for their management. Elsevier, Amsterdam, The Netherlands, pp.201-230.
  22. Liao K.H. Xu S.H. Wu J.C. Ji S.H. and Lin Q. 2011. Assessing soil water retention characteristics and their spatial variability using pedotransfer functions. Pedosphere 21(4):413–422.
  23. McGarry D. and Malafant K.W.J. 1987. The analysis of volume change in unconfined units of soil. Soil Science Society of America Journal 51:290–297.
  24. Mitchell A.R. 1992. Shrinkage terminology: escape from ‘normalcy’. Soil Science Society of America Journal 56:993–994.
  25. Nowamooz H. and Masrouri F. 2010. Relationships between soil fabric and suction cycles in compacted swelling soils. Engineering Geology 114:444–455.
  26. Peng X. and Horn R. 2005. Modeling soil shrinkage curve across a wide range of soil types. Soil Science Society of America Journal 69:584–592.
  27. Rao S.M. Reddy B.V.V. and Muttharam M. 2001. The impact of cycling wetting and drying on the swelling behaviour of stabilized expansive soils. Engineering Geology 60:223-233.
  28. Smiles D.E. 2000. Hydrology of swelling soil: A review. Australian Journal of Soil Research 38: 501-521.
  29. Sposito G. and Giraldez J.V. 1976. Thermodynamic stability and law of corresponding states in swelling soils. Soil Science Society of America Journal 40:352–358.
  30. Stirk G.B. 1954. Some aspects of soil shrinkage and the effect of cracking upon water entry into the soil. Australian Journal of Agricultural Research 5:279–290.
  31. Tripathy S. Subba Rao K.S. and Fredlund D G. 2002. Water content-void ratio swell-shrink paths of compacted expansive soils. Canadian Geotechnical Journal 39:938-959.
  32. van Genuchten M. Th. 1980. A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44:892-898.