جداسازی باکتری‌های Sinorhizobium meliloti از خاک‌های تحت کشت یونجه در کرج و بررسی تأثیر آنها بر عملکرد یونجه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی علوم خاک دانشگاه آزاد اسلامی، واحد کرج

2 استادیار مؤسسه تحقیقات خاک و آب، کرج

چکیده

یونجه (Medicago sativa L.) یکی از مهم­ترین لگوم­های علوفه­ای است که بیش از 600 هزار هکتار از اراضی زراعی کشور را به خود اختصاص داده است. این گیاه قادر است در صورت وجود باکتری Sinorhizobium meliloti در خاک و مناسب بودن شرایط اقلیم و خاک، مقدار قابل ملاحظه­ای از نیتروژن مولکولی هوا را تثبیت نماید. تعداد 20 نمونه خاک از مناطق مختلف کرج نمونه برداریشد و برخی خصوصیات فیزیکی و شیمیایی  نمونه ها اندازه­گیری شد. سپس با کاشت بذر یونجه در شرایط گلخانه­ای، تعداد32 جدایه باکتری جداسازی و تعداد 20 جدایه منسوب به S. meliloti شناسایی گردید و با استفاده از آزمون آلودگی، تشخیص جدایه­ها تأیید شد. برای بررسی تأثیر 20 جدایه S. meliloti بر عملکرد یونجه و مقایسه آن با مصرف کود نیتروژنی در حضور باکتری­های S. meliloti آزمایشی در قالب یک طرح کاملاً تصادفی شامل فاکتورهای تلقیح (شامل تیمار بدون تلقیح یا شاهد، تیمار تلقیح با باکتری، تیمار کود نیتروژنی) در سه تکرار در مجموع 72 تیمار انجام شد. نتایج تجزیه خاک­ها نشان داد که مقدار فسفر، بور، آهن و روی در اکثر مزارع یونجه کمتر از حد بحرانی بود و کمبود این عناصر یکی از عوامل محدود کننده تولید و همچنین تثبیت نیتروژن در مزارع استان بود. نتایج آزمایش گلخانه­ای نشان داد تأثیر جدایه­های جدا شده و کود نیتروژنی بر عملکرد با شاهد تفاوت معنی­داری در سطح احتمال 5 درصد داشت.. تأثیر تعداد نه جدایه روی ارتفاع گیاه،وزن تر و خشک ریشه و تأثیر 10 جدایه روی وزن غده نسبت به شاهد بدون تلقیح در سطح پنج درصد معنی­دار بود. مصرف نیتروژن باعث کاهش معنی­دار گره­زایی نسبت به شاهد و تیمارهای تلقیح شده گردید. بیشترین وزن خشک اندام هوایی مربوط به تیمار S11 با میانگین 38/1 گرم می­باشد که نسبت به تیمار S9 با میانگین 36/1 گرم در یک گروه آماری قرار دارند و هر دو نسبت به شاهد با میانگین 93/0 گرم افزایش معنی­داری نشان دادند. کمترین وزن خشک نیز مربوط به تیمار S17 با میانگین 77/0 گرم بود.

کلیدواژه‌ها


عنوان مقاله [English]

Isolation of Sinorhizobium meliloti Bacteria in Soils of Karaj Alfalfa Fields and Their Effect on Alfalfa Yield

نویسندگان [English]

  • M. T. Nezami 1
  • A. R. Fallah 2
1 Associate Professor, Karaj Azad University
2 Assistant Professor, Soil and Water Research Institute of Iran
چکیده [English]

One of the most important legume forages of Iran is alfalfa, which annually covers more than 600 thousand hectares of arable land. This plant is capable of fixing significant amounts of molecular nitrogen, if Sinorhizobium meliloti bacteria exist in the soil and suitable climatic and soil conditions prevail. In order to isolate and study the effect of different strainsof S. meliloti on alfalfa yield, 20 soil samples were taken from different fields in Karaj and were planted to alfalfa in the green house. Later, 32 strains related to S. meliloti were isolated and  20 of which were confirmed, using the contamination test. To study the effect of these 20 different strains on alfalfa yield and  to compare with applied nitrogen fertilizer in the presence of S. meliloti bacteria, an experiment was done using factorial treatments with completely randomized design in three replications (total of 72 treatments). Treatments were (inoculation, no-inoculation, and nitrogen fertilizer). Results of soil analysis showed that the amount of P, B, Fe, and Zn in most of alfalfa fields was less than critical level. Deficiency of these elements was one of the limiting factors of yield and nitrogen fixation in the field. The greenhouse experiment results showed that the effects of inoculation and nitrogen fertilizer on yield were significant (P<0.05). Also, the effect of nine isolates on height of plant and fresh and dry weight of roots were significant compared to the control, while 10 isolates had significant effects on the nodules weight.  Application of nitrogen fertilizer decreased nodulation significantly (P<0.05) compared to the control and the inoculated treatments. The S11 treatment, which had the highest mean  of shoot dry matter( 1.38g ), was in the same statistical group with S9 (with the average of 1.36 grams) and both treatments showed a significant increase compared to the control. The S17 had the lowest average dry weight (0.77 g).

کلیدواژه‌ها [English]

  • Nitrogen fertilizer
  • Nodule
  • Symbiosis
  • Nitrogen Fixation
  • leguminous plants
  1. احیائی، م.ع. و بهبانی‌زاده، ع. ا. 1372. شرح روش­های تجزیه شیمیائی خاک، جلد اول، ‌نشریه شماره 893، موسسه تحقیقات خاک و آب، تهران.
  2. خاوازی،ک. ح. رحیمیان، م.ج. ملکوتی و م. افشاری. 1385. وضعیت عناصر غذایی در خاک­های زیر کشت یونجه در استان همدان، مجله خاک و آب. جلد 4، شماره 2، صفحه: 14-1.
  3. سپهری،م.1382. اثرات آلودگی خاک به کادمیوم بر رشد، توان گره زایی و تثبیت نیتروژن سویه­های بومی سینوریزوبیوم ملیلوتی. پایان نامه کارشناسی ارشد خاکشناسی دانشگاه تهران. 179 صفحه.
  4. عسکری، م. حسین­هانی هزاوه، ش. 1391. اثرات تلقیح باکتریایی ریزوبیوم ملیلوتی  rhizobium melilotiبومی و استاندارد بر رشد گیاه یونجه (Medicago sativa) تحت آلودگی SO2 هوا. مجله سلول و بافت. جلد 3، شماره 3، صفحه: 270-259.
  5. Ahemad M, Khan MS. Functional Aspects of Plant Growth Promoting Rhizobacteria. Recent Advance. Insight Microbio. 2011; 1(3): 39-54.
  6. Amarger, N. (2001). Rhizobia in field. Advan. Agronomy. 73: 109-169.
  7. Anjum MA, Sajjad MR, Akhtar N, et al. Response of cotton to Plant Growth Promoting Rhizobacteria (PGPR) inoculation under different levels of nitrogen. Agri. Res. Pakistan 2007; 45(2):135-142.
  8. Bashan Y, Levanony H, Mitiku G. Changes in proton efflux of intact wheat roots induced by Azospirillum brasilense Cd. Cana. J. of Microb. 1989; 35: 691-697.
  9. Beck, D. P., Materon, L. A. and Afandi, F. (1993). Practical Rhizobium –Legume Technology Manual. Technical Manual No. 19, ICARDA, Syria.
  10. Bockman, O. C. (1997). Fertilizers and biological nitrogen fixation as source of plant nutrients: perspectives for future agriculture. Plant Soil 194:11-14.
  11. Brockwell, J., Bottomley, P. J., and Thies, J. E. (1995). Manipulation of rhizobia microflora for improving crop productivity and soil fertility a critical assessment. Plant Soil 174: 143-180.
  12. Dadson RB, AcquaahG. Rhizobium japonicum, nitrogen and phosphorus effects on nodulation, symbiotic nitrogen fixation and yield of soybean (Glycine max (L.) Merrill) in the Southern Savanna of Ghana. Field Crops Res. 1984; 9:101-108.
  13. Date, R. A., and Halliday, J. (1987). Collection, isolation, cultivation, and maintenance of Rhizobia. In: Elkan, G. H. (ed.). Symbiotic Nitrogen Fixation Technology. Marcel Dekker, New York.
  14. Eardly, B. D., Wang, F. S., Whittam T. S., and Selander, R. K. (1995). Species limits in Rhizobium population that nodulate the common bean (Phaseolus vulgaris). Appl. Environ. Microbiol. 61: 507-512.
  15. Etesami H, Alikhani H. Evaluation of plant growth hormones production (auxins) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes and the loss of chemical fertilizers. Agronomy Journal (Pajouhesh and Sazandegi). 2011; 92: 53-62.
  16. Gholami A, Shahsavani S, Nezarat S. The effect of Plant Growth Promoting Rhizobacteria (PGPR) on germination, seedling growth and yield of Maize. World Academy of Sci. Engi. and Tech. 2009; 49: 19-24.
  17. Peoples, M. B., Giller, K. E., Herridge, D. F., and Vessey, J. K. (2002). Limitations to biological nitrogen fixation as a renewable source of nitrogen for agriculture. In: Finan M. T., Mark, R. O., Layzell, D. B., Vessey, J. K., Newton, W. (eds.). Nitrogen Fixation: Global Perspectives, CABI Publishing, UK.
  18. Peoples, M. B., Landha, J. K., and Herridge, D. F. (1995). Enhancing legume N2-fixation through plant and soil management. Plant Soil 174:83-101.
  19. Pierzyski, G. M., J. T. Sims, and G. F. Vance. 2000. Soil and Environmental quality.(2nd edition). CRC Press, Boca Raton,FL.
  20. Shantharam, S., and Mattoo, A. (1997). Enhancing biological nitrogen fixation: an apprasial of current and alternative technologies of N input into plants. Plant Soil 194: 2055-216.
  21. Spaink, H. P., A. Kondorsi and P. J. J. Hooykaas. 1998. The Rhizobiaceae Molecular Biology of model Plant-Associated Bacteria. Kluwer, Academic Press. PP.566.
  22. Van Berkum, P., Beyene, D., Bao, G. P., Cambell, T. A., and Eardly, B. D. (1998). Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen –fixing symbioses with Medicago ruthenica  [(L.) Ledebour]. Int. J. Syst. Bacteriol. 48: 13-22.
  23. Vance, C. P. (1998). Legume symbiotic nitrogen fixation: Agronomic aspects. In: spaink, H. P., Kondorosi, A., and Hooykass, P.J.J. (eds.) The Rhizobiaceae: Molecular Biology of Model Plant – Associated Bacteria. Kluwer Academic Press. Netherland.
  24. Vance, C. P. (2001). Symbiotic nitrogen fixation and phosphorus acquistion: plant nutrition in a world of declining renewable resources. Plant Physiol. 127:390-397.Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under sever conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63: 968-989.