اثر اصلاح‌کننده‌های آلی و معدنی و زمان خواباندن بر شکل‌های شیمیایی سرب در یک خاک آهکی آلوده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل دکتری علوم خاک، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشیار گروه علوم خاک، دانشکده مهندسی آب و خاکف دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استاد گروه علوم خاک، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 دانشیار گروه علوم خاک، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

آلودگی خاک به  فلزهای سنگین به‌دلیل اثرهای مخرب آن بر محیط زیست مانند تهدید سلامتی انسان­ها، مسمومیت گیاهان و اثرهای طولانی‌مدتی که بر حاصلخیزی خاک می­گذارند، تبدیل به یک نگرانی جهانی شده است. این پژوهش برای تعیین اثرهای اصلاح­کننده­های آلی (بیوچار تولید شده در دو دمای 640 و 420 درجه سلسیوس) و معدنی (پومیس، لیکا، زئولیت و بنتونیت) و زمان انکوباسیون بر توزیع گونه­های سرب در بخش­های مختلف یک خاک آهکی آلوده انجام شد. برای این کار، آزمایشی به­صورت فاکتوریل و در قالب طرح کاملاً تصادفی با سه سطح اصلاح­کننده (0، 1 و 5 درصد وزنی) و دو زمان (90 و 180 روز) انجام گرفت. در پایان زمان انکوباسیون توزیع شکل­های سرب در بخش­های تبادلی، کربناتی، اکسیدهای آهن و منگنز، آلی و باقی‌مانده با روش عصاره­گیری دنباله­ای تسیر تعیین شدند. نتایج نشان داد که گذشت زمان باعث افزایش بخش سرب تبادلی (52/16 درصد)، کربناتی (02/1 درصد)، اکسید آهن و منگنز (53/9 درصد) و باقی‌مانده (1/2 درصد) و کاهش سرب در بخش آلی (26/15 درصد) گردید. همچنین، افزودن اصلاح­کننده­ها به خاک موجب کاهش معنادار غلظت سرب در بخش تبادلی (F1) گردید. بیشترین کاهش غلظت سرب در بخش تبادلی (F1) در سطح 5 درصد بیوچار 640 مشاهده گردید. یافته­های این پژوهش نشان داد که با گذشت زمان، بیوچار 640 مؤثرترین تیمار در کاهش غلظت سرب در بخش تبادلی بود. 

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Organic and Inorganic Amendments and Incubation Time on Fractionation of Lead in a Contaminated Calcareous Soil

نویسندگان [English]

  • Somayeh Sefidgar Shahkolaee 1
  • M. Baranimotlagh 2
  • F. Khormali 3
  • E. Dordipour 4
1 PhD Graduate, Dept. of Soil Sciences, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources
2 Associate Professor., Dept. of Soil Sciences, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources
3 Professor, Dept. of Soil Sciences, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources
4 Associate Professor, Dept. of Soil Sciences, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Soil pollution with heavy metals has become a global concern because of its damaging effects on the environment, including threats to human health, toxicity in plants, and long-term effects on soil fertility. This study was conducted to investigate the effect of organic amendments (biochar 640°C, and biochar 420°C) and inorganic amendments (Pumice, Leca, Zeolite and Bentonite) andincubation time on the chemical forms of Pb in a contaminated calcareoussoil. Treatments consisted of two incubation times (90 and 180 days) and three amendment levels (0, 1, and 5 wt%). The experiment was conducted in a factorial arrangement with completely randomized design, with three replications.  At the end of the incubation times, the chemical fractions of Pb were determined by Tessier sequential extraction method. The experimental resultsindicated that application of amendments effectively decreased the Pb concentrations in the exchangeable fraction (F1) of contaminated soils. The 5% biochar 640 showed the highest decrease in the F1 fraction of Pb. The results showed that Pb concentration increased the exchangeable (16.52%), carbonated (1.02%), oxide (9.53%), and residual (2.1%) fractions and decreased the organic fraction (15.26%) during the time. With the passing of time, treatment with Biochar 640°C and bentonite (5%) was the most effective in decreasing Pb concentration in exchangeable fraction.

کلیدواژه‌ها [English]

  • Biochar
  • Incubation
  • Remediation
  • Sequential Extraction
  1. احمدزاده سروستانی، س. و چرم، م. 1395. اثر لجن فاضلاب، باکتری تیوباسیلوس تیواکسیدانس و زمان بر شکل­های شیمیایی کادمیوم در خاک آهکی. نشریه پژوهش­های خاک (علوم خاک و آب، 4 (30): 486-475.
  2. رستمی، ق.، غلامعلی­زاده، ا. و لکزیان، ا.1392. اثر زمان بر توزیع شکل­های شیمیایی سرب در خاک آلوده. نشریه آب و خاک (علوم و صنایع کشاورزی)، 27 (5): 1066-1057.
  3. شاهمرادی، س.، افیونی، م.، حاج­عباسی، م. و خوشگفتارمنش، ا. 1395. تأثیر زئولیت و بنتونیت بر دسترسی زیستی روی، کادمیوم و سرب در یک خاک آلوده تحت کشت آفتابگردان. نشریه علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی)، 2: 173-165.
  4. صفرزاده شیرازی، ص.، کرمی، ش. و زارع، ل. 1397. اثر یک ماده آلی و زمان خواباندن بر شکل های شیمیایی سرب در یک خاک آهکی. نشریه پژوهش­های خاک (علوم خاک و آب، 32 (1): 85-73.
  5. Ahnstrom Z.S., and Parker D.R. 1999. Development and assessment of a sequential extraction procedure for the fractionation of soil cadmium. Soil Science Society of America Journal. 63:1650-1658.
  6. Basta, N.T., Gradwohl, R., Senethen, K.L., and Schroder, J.L. 2001. Immobilization of lead, zinc and cadmium in semelter contaminated soils using biosolids and rock phosphate. Journal of Environmental Quality. 30: 1222-1230.
  7. Chapman, H.D. 1965. Cation exchange capacity. In: Methods of Soil Analysis. Part II. Black, C. A. (Ed). American Society of Agronomy, Madison, WI, USA.
  8. Chen, M., and Ma, L. 2001. Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal. 65:499–510.
  9. Chi, C.M and Wang, Z.C. 2010. Characterizing salt-affected soils of Songnen plain using saturated paste and 1:5 soil-to-water extraction methods, Arid Land Research and Management. 24(1): 1-11.
  10. Cui, L., Pan, G., Li, L., Bian, R., Liu, X., Yan, J., Quan, G., Ding, C., Chen, T., Liu, Y., Yin, C., Wei, C., Yang, Y., and Hussain, Q. 2016. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment. Ecological Engineering. 93:1–8.
  11. Day, P.R. 1955. Particle fractionation and particle-size analysis. In: Black, C.A. (Ed), Method of soil analysis. Part I. Agronomy 9, Soil Science Society. America. Madison, WI.Pp. 545-567.
  12. Gupta, R.K., Singh, R.R., and Abrol, I.P. 1989. Influence of simultaneous changes in sodicity and pH on the hydraulic conductivity of an alkali soil under rice culture. Soil Science. 147:28-43.
  13. Hamidpour, M.M., Afyuni, M., Kalbasi, A.H., Khoshgoftarmanes, V., and Inglezakis, J. 2010. Mobility and plant availability of Cd (II) and Pb (II) adsorbed on zeolite and bentonite. Applied Clay Science. 48:342-348.
  14. Han, F.X., Kingery, W.L., Selim, H.M., and Gerald, P. 2000. Accumulation of heavy metals in a long-term poultry waste-amended soil. Soil Science. 165:260-268.
  15. Heseu, Z. 2006. Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids. Chemosphere. 63(5):762–771.
  16. Igalavithana, A.S., Lee, S.E., Lee, Y.H., Tsang, D.C.W., Rinklebe, J., Kwon, E.E., and Ok, Y.S. 2017. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere. 174:593-603.
  17. Jalali, M., and Khanlari, Z.V. 2008. Effect of going process on the fractionation of heavy metals in some calcareous soils of Iran. Geoderma. 143:26-40.
  18. Jazayeri, S.H., Hayati Ashtiani, M., Ashrafizadeh S.N., Ghannadi Maragheh M., Nozad Golikand A. 2010. Heavy Metal Removal from Synthetics Wastes by Natural and Acid-Activated Bentonites. Journal of Nuclear Science and Technology, 51:18-27.
  19. Judy, Z., and Movahedi Naeini, S.A.R. 2007. Effects of leca, zeolite and compost on soil moisture and evaporation. Journal of Agricultural Sciences and Natural Resources. 14 (2).
  20. Khurana, M.P.S., and Kansal, B.D. 2014. Effect of farm yard manure on chemical fractionation of cadmium and its bio-availability to maize crop grown on sewage irrigated coarse textured soil. Journal of Environmental Biology. 35: 431-437.
  21. Liang, J., Yang, Z., Tang, L., Zeng, G., Yu, M., Li, X., Wu, H., Qian, Y., Li, X., and Luo, Y. 2017.  Changes in heavy metal mobility and availability from contaminated. Chemosphere 181:281-288.
  22. Lindsay, W.L. 1979. Chemical Equilibria in Soils. John Wiley & Sons Inc., USA.
  23. Lou, L., Shen, Z., and Li, X. 2004. The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper enriched soils. Environmental and Experimental Botany. 51(2):111–120.
  24. Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., Bolan, N., Pei, J., and Wang, H. 2014. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems & Environment. 191:124–132.
  25. Malakootian, M., Nouri, J., and Hossaini, H. 2009. Removal of heavy metals from paint industry's wastewater using Leca as an available adsorbent. International Journal of Environmental Science and Technology. 6 (2):183-190.
  26. Meng, J., Tao, M., Wang, L., Liu, X., and Xu, J. 2018. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Science of the Total Environment. 633:300–307.
  27. Nelson, R.E. 1982. Carbonate and gypsum. In A. L. Page (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
  28. Prusty, B.G., Sahu K.C., and Godgul G. 1994. Metal contamination due to mining and milling activities at the Zawar zinc mine, Rajasthan, India. 1. Contamination of stream sediments. Chemical Geology. 112:275-291.
  29. Pinto, A.P., Mota, A.M., Varennes, A., and Pinto, F.C. 2004. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of the Total Environment. 326(1-3):239-47.
  30. Puga, A, P., Melo, L.C., Abreu, C.A., Coscione, A.R., and Paz-Ferreiro, J. 2016. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil & Tillage Research. 164:25–33.
  31. Puschenreiter, M.O., Horak, W., Friesl, W., and Hartl, M. 2005. Low-cost agricultural measures to reduce heavy metal transfer into the food chain: A review. Journal of Plant, Soil and Environment. 51: 1-11.
  32. Sposito, G., Lung, L.J., and Chang A.C. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in Solid Phases. Soil Science Society of America Journal 46: 260-264.
  33. Sun, Y., Li, Y., Xu, Y., Liang, X., and Wang, L. 2015. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Applied Clay Science. 105–106, 200–206.
  34. Sun, Y., Sun, G., Xu, Y., Liu, W., Liang, X., and Wang, L. 2016. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium contaminated soils. Journal of Environmental Management. 166: 204-210.
  35. Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th edition. USDA-Natural Resources Conservation Service, Washington, DC.
  36. Tessier, A., Campbell, P.G.C., and Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemical. 51 (7): 844–850.
  37. Walkley, A., and Black, I.A. 1934. An examination degtijarf method for determination for role organic matter and proposed modification of the chromic acid titration method. Soil Science. 37:29–38.
  38. Wen, J., Yi, Y., and Zeng, G. 2016. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. Journal of Environmental Management. 178:63-69.
  39. Yin, D., Wang, X., Chen, C., Peng, B., Tan, C., and Li, H. 2016. Varying effect of biochar on Cd, Pb and as mobility in a multi-metal contaminated paddy soil. Chemosphere. 152:196-206.
  40. Zhu, X., Chen, B., Zhu, L., and Xing, B. 2017. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution. 227:98-115.