مدل‌سازی ضخامت لایه سطحی خاک به کمک ویژگی‌های پستی و بلندی زمین‌نما در منطقه ریمله استان لرستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی پژوهش، بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی لرستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، خرم‌آباد، ایران

2 استاد گروه علوم خاک، دانشگاه علوم کشاورزی و منابع‌طبیعی گرگان

3 استادیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع‌طبیعی گرگان

4 استادیار موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

تشخیص افق سطحی خاک و اندازه­گیری ضخامت و تغییرات آن با حفر نیم­رخ خاک امکان­پذیر است. این­کار مستلزم هزینه، وقت و نیروی انسانی ماهر است. رهیافت مدل­سازی روابط خاک - زمین­نما این امکان را می­دهد تا با توجه به ویژگی­های پستی و بلندی زمین­نما بتوان مدل پیش­بینی ضخامت افق سطحی خاک را از طریق روش آماری مناسب تهیه نمود. در این تحقیق ویژگی­های اولیه و ثانویه پستی و بلندی زیرحوضه ریمله واقع در استان لرستان (منطقه زاگرس میانی) از مدل رقومی ارتفاع (DEM) استخراج شد. سپس، در 191 نقطه انتخاب شده به روش تصادفی سیستماتیک در سطح زیرحوضه، ضخامت افق­سطحی اندازه­گیری شد. داده­های مربوط به ضخامت افق­سطحی و ویژگی­های پستی و بلندی زمین­نما به روش آماری رگرسیون خطی گام­به­گام با استفاده از نرم­افزار اس­پی­اس­اس نسخه 19 تجزیه و تحلیل شد. نتایج نشان داد که پیش­بینی ضخامت افق­سطحی خاک با مدل با دو ویژگی ارتفاع از سطح دریا (E) و درصد شیب (S) رابطه منفی و با جهت شیب (AS) رابطه مثبت داشت. مدل برازش داده شده به داده­ها عبارت بود از AS 008/0 + S 152/0- E 012/0 -596/39 = Athick. ضریب تبیین مدل برابر با 54/0 به­دست آمد. نمودار ضخامت افق­سطحی پیش­بینی شده در مقابل ضخامت مشاهده شده افق سطحی خاک نیز رابطه خطی با همین ضریب تبیین 54/0 را نشان داد که بیان­گر توانایی مدل در پیش­بینی ضخامت افق سطحی است. سایر ویژگی­های پستی و بلندی زمین­نما نیز بر ضخامت افق­سطحی خاک مؤثر بود، اما تأثیر آن­ها در سطح 5 درصد معنادار نبود و بنابراین، در مدل پیش­بینی ضخامت افق­سطحی خاک دخالت داده نشدند.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling Thickness of Soil- Surface Layer Using Topographic Attributes of Landscape in Rimeleh Catchment, Lorestan Province

نویسندگان [English]

  • morad sepahvand 1
  • F. Khormali 2
  • F. Kiani 3
  • K. Eftekhari 4
1 Research Lecture, Soil and Water Research Department, Lorestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Khorramabad, Iran
2 Professor of Soil Sciences Department, Gorgan University of Agricultural Sciences and Natural Resources
3 Assistant Professor of Soil Sciences Department, Gorgan University of Agricultural Sciences and Natural Resources
4 Assistant Professor of Soil and Water Research Institute, Agricultural Research, Education and Extension Organization
چکیده [English]

Distinguishing soil surface horizon and its thickness is possible through soil survey and drilling. This requires budget, time, and skilled persons; therefore, using predicting methods as a solution for simple determination of soil characteristics has gained much importance in recent years. This work considers employing stepwise multiple linear regression statistical approach in order to propose a suitable model to predicate soil surface horizon thickness (SSHT) from topographic attributes according to establishment of soil and landscape characteristics relationships. To fulfill the goals of this study, data of primary and secondary topographic features of the Rimeleh sub-catchment located in Lorestan Province of Iran were derived from a Digital Elevation Model (DEM) and, the SSHT data yielded from soil surveys at 191 sampling points distributed in the study area in a systematically randomized manner. The SPSS 19 package was used to clarify statistical characteristics of gathered SSHT topographic data and test the fitted model considerations. The fitted model for the gathered data was Athick = 39.596 – 0.012E – 0.152S + 0.008AS.  The determination coefficient of the model was computed as 0.54. It is clear that the model fitted to the data has highly significant negative correlation with slope percent (S) and elevation (E) (P≤0.01) and a significant positive correlation with aspect (AS) (P≤0.05). Our investigation demonstrated that the fitted model to the scatter plot of observed data values versus predicted values has a determination coefficient of 0.54, which indicates the explanatory power of the model. Other topographic attributes affected the SSHT but their effects were not significant statistically. Therefore, they were not included in the model.

کلیدواژه‌ها [English]

  • Soil surface horizon model
  • Middle Zagros
  • Digital Elevation Model
  1. بنایی، محمد حسن. 1356. نقشه رژیم رطوبتی و حرارتی خاک­های ایران.
  2. Al-Abbas, A. H., Swaon, P.H., and M.F. Baumgardner. 1972. Relating organic matter and clay content to multi sepectral radiance of soils. Soil. Sci. 114(6): 477-485.
  3. Beven, K. J., and M.J. Kirkby. 1979. A physically based variable contributing area model of basin hydrology. Hydrol.Sci. Bull. 24: 43-69.
  4. Bourennane, H., King, D., Chery, P., and A. Bruand. 1996. Improving the kriging of a soil variable using slope gradient as external drift European Journal of Soil Science. 47: 473-483. Brubaker, S.C., Jones, A. J., Lewis, D.T., and K. Frank. 1993. Soil properties associated with landscape position. Soil. Sci. Soc. Am. J., 57: 235-239.
  5. Carter, B. J., and E.J. Ciokosz. 1991. Slope gradient and aspect effect on soil developed from sandstone in Pennsylvania. Geoderma 49: 199-213.
  6. Chaplot, V., Darboux, F., Bourennane, H., Leguidios, S., Silvera, N., and K. Phacomphon. 2006. Accuracy of interpolation techniques for the derivation of digital elevation to land form type and data density. Geomorphology 77: 14-26.
  7. Chaplot, V., Walter, C., Curmi, P., and A. H.  Larousse. 2000. The use of auxiliary geophysical data to improve a soil- model. Soil Science. 16 (12): 961-970.
  8. Daniels, R. B., Gilliam, J. W., Cassel, D. K., and L. A. Nelson. 1984. Soil erosion class and landscape position in the North Carolina Piedmont. Soil. Sci. Soc. Am. J., 49: 991-995.
  9. Florinsky, L.V., Eilers, R.G., Manning, G.R., and L.G. Fuller. 2002. Prediction of soil properties by digital terrain modeling. Environmental Modeling and Software 17: 295-311.
  10. Gastaldi, G., Minansny, A. B., and B. Mcbratncy. 2012. Mapping the occurrence and thickness of soil horizons within soil profiles. Conference: digital soil assessments and beyond proceedings of the fifth global workshop on digital soil mapping.
  11. Gessler, P.E., Chadwick, O.A., and K. Holmes. 2000. Modeling soil- landscape and ecosystem properties using terrain attributes. Soil. Sci. Soc. Am. J. 64: 2046-2056.
  12. Gessler, P.E., Moore, I.D., Mckenzie, N. J., and P. J. Ryan. 1995. (Published online 2007).Int. J. Geographic Information. 9(4): 421-432.
  13. Gobin, A., Campling, P., and J. Feyex. 2001. Soil- landscape modeling to quantify spatial variability of soil texture. Physics and chemistry of the earth. 26: 41-45.
  14. Kreznor, W.R., Olson, K. R., Banwart, W.L., and D.L. Johnson. 1989. Soil landscape and erosion relationships in a northwest Illinois Watershed. Soil. Sci. Soc. Am. J., 53:1763-1771.
  15. Mcbratney, A.B., Santos, M.L., and B. Minasny. 2003. On digital soil mapping. Geoderma, 117(1-2): 3-52.
  16. Mcsweeney, K., Gessler, P.E., Slater, B., Hammer, D., Bell, J., and G.W. Petersen. 1994. Towards a new framework for modeling the soil- landscape continuum. P. 127-145. In R. Amundson and J.W. Harden (e.d.) Factors of soil formation: a fiftieth anniversary retrospective, SSSA spec. publ.33.SSSA, Madison, WI.
  17. Moore, I. D., Gessler, P.E., and G.A. Neilson. 1993. Soil attributes prediction using terrain analysis. Soil. Sci. Soc. Am. j. 57: 443-452.
  18. Moore, I.D., Landson, A.R., and R. Grayson. 1991. Digital terrain modeling: A review of hydrological, geomorphological, and biological application. Hydro Processes 5: 3-30.
  19. Milen, G. 1935. Some suggested units of classification and mapping particularly for East Africa soils. Soil. Res. Pp: 183-198.
  20. Odeh, I.O., Mcbratney, A., and D. J. Chittle Borough. 1994. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma, 63:197-214.
  21. Park, S. J., Mcsweeney, K., and B. Lowery. 2001. Identification of the spatial distribution of soils using a process- based terrain characterization. Geoderma 3:249-272.
  22. Pennock, D. J., Zebarth, B.J., and E. De Jong. 1987. Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma 40, 297-315.
  23. Perpustakaan UGM, I- lib. 2005. Journal I-lib UGM. http://i- lib. ugm. Ac. Id/ Journal.
  24. Ryan, P.J., Mckenzie, N.J., O, Connell, D., Loughhead, A. N., Leppert, P.M., Jacquier, d., and L. Ashton. 2000. Integrating forest soil information across scales: spatial prediction of soil properties under Australian forests. Forest Ecology and Management, 138: 139-157.
  25. Thompson, J. A., Pena- Yewtukhiw, E.M., and J.H. Grove. 2006. Soil- landscape modeling across a physiographic region: Topographic pattern and model transportability. Geoderma, 133: 57-70.
  26. Thompson, J. A., and R. K. Kolka. 2005. Soil carbon storage in a forested watershed using quantitative soil- landscape modeling. Soil. Sci. Soc. Am. J. 69: 1080-1093.
  27. Thompson, J.A., Bell, J. C., and C. A. Bulter. 1997. Quantitative soil landscape modeling for estimating the extent of hydromorphic soils. Soil. Sci. Soc. Am. J.61: 971-980.
  28. Troeh, F.R.1964. Land forms parameters correlated to soil drainage. Soil Society American Proceedings, 28: 808-812.
  29. Walker, P.H., Hall, G.F., and R. Protz. 1968. Relating between landform parameters and soil parameters. Soil. Sci. Soc. Am. J, 32: 101-104.