ارزیابی اثر پایداری مقیاس در بهینه‌سازی مدیریت نمونه‌برداری برخی از ویژگی‌های خاک‌های شالیزاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش مؤسسه تحقیقات کشور برنج، رشت، ایران

2 کارشناس ارشد مؤسسه تحقیقات کشور برنج، رشت، ایران

چکیده

الگوی نمونه­برداری، تعداد نمونه، و فاصله نمونه­ها نقش بسیار مهمی در کیفیت نقشه متغیرهای محیطی دارد. این تحقیق با هدف بهینه سازی مدیریت نمونه­برداری ( تعداد، فاصله و الگوی نمونه­برداری) با استفاده از تلفیق پایداری مقیاس، تغییرپذیری و موازنه واریانس تخمین-هزینه اندازه­گیری انجام شد. ویژگی­های خاک مطالعه شده عبارت از نیتروژن­کل، فسفر و پتاسیم قابل استفاده دراراضی شالیزاری استان گیلان بودند. برای این منظور چهار مقیاس متفاوت نمونه­برداری در یک محدوده 306 ‌هکتار از اراضی شالیزاری در نظر گرفته شد. مقیاس اول شامل 357 نمونه از شبکه­ای با ابعاد 50×100 متر‌، مقیاس دوم شامل 127 نمونه از شبکه­ای با ابعاد 100×200 متر‌، مقیاس سوم شامل 74 نمونه از شبکه­ای با ابعاد 200×400 متر‌ و مقیاس چهارم  شامل 43 نمونه از شبکه­ای با ابعاد 400×800 متر ‌بود. اندازه وابستگی مکانی و پایداری مقیاس به ترتیب با استفاده از تغییرنما و پارامتر ((هارست)) ارزیابی گردید. راهبرد موازنه واریانس تخمین- هزینه در ویژگی­های خاک که دارای خودتشابهی و پایداری مقیاس بودند؛ از نظر اقتصاد اندازه­گیری مؤثر بود. تعداد و فاصله بهینه برای فسفر و پتاسیم قابل استفاده که در ناحیه مطالعه شده خود تشابهی نشان دادند، به تعداد 240 نمونه با الگوی نمونه­برداری مستطیل شکل با ابعاد 75×150متر در راستای 44 درجه شمالی-غربی ناحیه مطالعه شده به دست آمد، اما برای ویژگی­هایی که با تبدیل مقیاس غیریکنواختی و ناپایداری مقیاس نشان دادند و ساختار مکانی آنها از نظامدار به تصادفی تبدیل گردید (مانند نیتروژن کل در ناحیه مطالعه شده) موازنه واریانس تخمین-هزینه اندازه­گیری کارا به نظر نمی­رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Scale Invariance to Optimize Sampling Management of Soil Properties in Paddy Fields

نویسندگان [English]

  • Naser Davatgar 1
  • M. Shakouri Katigari 2
1 Assistant Professor, Rice Research Institute of Iran (RRII)
2 MSc, Rice Research Institute of Iran (RRII)
چکیده [English]

The sampling design, samples size, and their distances have important roles in determining the quality of the environmental variables map. This study was conducted to optimize sampling management (size, distance, and sampling design) with integrating of the scale invariant, variability, and the balance of the cost of measurement-estimation variance. The soil studied variables were total nitrogen, available phosphorous (P) and available potassium (K) in paddy fields of Guilan province. Four different sampling scales were considered in a paddy field of 306 ha. The scales consisted of 357 soil samples with dimensions of 100 × 50 m; 127 soil samples with dimensions of 200 × 100 m; 74 soil samples with dimensions of 400 × 200 m; and the fourth scale consisted of 43 soil samples with dimensions of 800 × 400 m. The spatial structure and scale invariance were assessed using variogram and the Hurst parameter, respectively. The strategy of the balance between the costs of measurement- variance estimation was economically efficient in the measurements of these variables, which showed self-similarity and scale invariance. The optimum size and distance for available P and K were 240 samples with a rectangular network pattern (75m × 150m) along the 44° north-west direction. However, the strategy of the balance between the costs of measurement- variance estimation is not suitable for those variables  that show heterogeneity and scale variance, e.g. total nitrogen in the studied region.

کلیدواژه‌ها [English]

  • Balance of variance estimation–cost of measurement
  • Hurst parameters
  • Kriging
  • Self-similarity
  • Spatial variability
  1. دوات­گر، ن. 1377. بررسی تغییرات مکانی خصوصیات خاک. پایان­نامه. دانشکده کشاورزی، دانشگاه تبریز. 108 صفحه.
  2. حسنی­پاک، ع،ا و شرف­الدین، م. 1382.  تجزیه و تحلیل داده­ها. انتشارات دانشگاه تهران. 987 صفحه.
  3. محمدی، ج. آمار مکانی (ژئواستاتیستیک).1385. انتشارات پلک. تهران. 453 صفحه. شماره 269.
  4. محمدی، ج. پدومتری (نظریه فراکتال). 1389. انتشارات پلک. تهران. 383 صفحه.
  5. محمدی، م. 1997. خلاصه گزارش بررسی دقیق خاک شالیزاری، رشت استان گیلان. انتشارات موسسه علوم و حاصلخیزی خاک.
  6. Alemi, M.H., Shahriariand, M.R. and Nielsen, D.R. 1998. Kriging and cokriging of soil water properties. Soil technology 1:117-132.
  7. Amador, J.A., Wang, Y., Savin, M.C. and Gorres, J.H. 2000. Fine-scale spatial variability of physical and biological soil properties in kingston, Rhode Island. Geoderma. 98: 83–94.
  8. Brus, D. and Heuvelink, G.B.M.  2007. Optimization of sample patternsfor universal kriging of environmental variables. Geoderma. 138:86-45.
  9. Cahn, M.D., Hummel, J.W. and Brouer, B.H. 1994. Spatial analysis of soil fertility for site-specific crop management. So. Sci. Soc. Am. J. 58:1240-1248.
  10. Castrignano, A., Giugliarini, L., Risaliti, R. and Martinelli, N. 2000. Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma. 97: 39-60.
  11. Doberman, A. and Fairharst, T. 2000. Rice nutrient disorders and nutrient management. IRRI, Philippines.
  12. Jin, J.  and Jiang, Ch. 2002.  Spatial variability of soil nutrients and sitespecific nutrient management in the P.R. China. Computers and Electronics in Agriculture. 36: 165-172.
  13. Goovaerts, P. 1997. Geostatistics for natural resources evaluation. New York, Oxford Univ. Press.
  14. Lark, R.M. 2000. Designing sampling grids from imprecise information on soil variability, an approach based on the fuzzy kriging variance. Geoderma 98 35–59.
  15. Lee, C. K. 2002. Multifractal characteristics in air pollutant concentration time series. Water Air Soil Pollut. 135:389-409.
  16. Liu, D., Wang, Z., Zhang, B., Song, K., Li, X., Li, J., Li, F. and Duan, H. 2006. Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agriculture, Ecosystems and Environment. 113: 73–81.
  17. McGrath, D. and Zhang, C. 2003. Spatial distaribution of soil organic carbon concentrations in grassland of Ireland. Geoderma. 18: 1629-1639.
  18. Minasny, B., McBratney, B., Dennis J.J. and Walvoort.  2007. The variance quadtree algorithm: Use for spatial sampling design. Computer and Geostatistics. 33: 383-392.
  19. Mueller, T.G., Pierce, F.J., Schabenberger, O. and Warncke, D.D.  2001. Map quality for site-specific management. Soil Sci. Soc. Am. J. 65: 1547-1558.
  20. Ortega, R.A., and Santibanez, O.A. 2007. Determination of management zones in corn (Zea mayes L.) based on soil fertility. Computers and Electronics in agriculture 58:49-59.
  21. Pardini, G. 2003. Fractal scaling of surface roughness in artificially weathered smectite-rich soil regoliths. Geoderma. 117:157-167.
  22. Robinson, T.P. and Metternicht, G. 2005. Testing the performance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture. 50: 97-108.
  23. Russo, D. and Jury, W.A. 1988. Effect of the sampling network on estimates of the covariance function of stationary fields. Soil Sci. Soc. Am. J., 52: 1228-1234.
  24. Sun, B., Zhou, Sh. and Zhao, Q. 2003. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of suberopical china. Geoderma. 115: 85-99.
  25. Wanga, W., Suna, X., Chenb, J.M.,  Liua  Q.H. and Zhao, Y.C . 2007. Regional patterns of soil organic carbon stocks in China. Soil Sci. 30:246-254.
  26. Voltz, M. and Webster, R. 1990. A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. Journal of Soil Science. 31:505–524.
  27. Webster, R. and Oliver, M.A. 2000. Geostatistics for Environmental Scientists. Wiley Chichester 271 pp.
  28. Western, A.W. and Blosehel, G. 1999. On the spatial scaling of soil moisture. Journal of Hydrology. 217: 203-224.
  29. Western, A.W., Grayson, R.B., Bloschl, G.,  and Wilson, J.D. 2003. Spatial variability soil moister and implication for scaling. In: Pachepsky, Y., Radeliffe, D., Magdisedim, H. (eds). Scaling Methods in Soil Physics, CRC press LLC, pp. 119-142.
  30. Wilding, L.P. and Dress, L.R.  1983. Spatial variability and pedology. In: Wilding, L.P., Smeckand N.E. and Hall, G.F.  (eds.) Pedogenesis and Soil Taxonomy. I. Concepts and Interactions. Elsvier Science Pub., pp. 83-116.
  31. Zhao, P., Shao, M. and Wang, T. 2010. Spatial Distributions of Soil Surface-Layer Saturated Hydraulic Conductivity and Controlling Factors on Dam Farmlands. 24:2247-2266.
  32. Zeleke, T.B. and Cheng Si, B. 2005. Scaling Relationships between saturated Hydraulic Conductivity and soil physical properties. Soil Sci. Soc. Am. J., 69:1691-1702.