اثرات کمپوست زباله شهری و EDTA (اتیلن دی آمین تترا استیک اسید) بر گیاه پالایی سطوح مختلف سرب و کادمیم توسط آفتابگردان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد دانشگاه شهید باهنر کرمان

2 دانشیار گروه خاکشناسی دانشگاه شهید باهنر کرمان

3 دانشیار گروه خاکشناسی دانشگاه فردوسی مشهد

چکیده

آلودگی فلزات سنگین یکی از جدی‌ترین مشکلات زیست محیطی است که در سراسر دنیا در حال گسترش می‌باشد. پژوهش حاضر به منظور مطالعه اثر EDTA (اتیلن دی آمین تترا استیک اسید) و کمپوست زباله‌ی شهری و هم چنین سطوح مختلف آلودگی سرب و کادمیم خاک بر وزن خشک گیاه، غلظت، مقدار و شاخص جذب عناصر سرب و کادمیم در گیاه آفتابگردان انجام شد. این آزمایش به صورت دو آزمایش مستقل در قالب طرح فاکتوریل با پایه کاملاً تصادفی با سه سطح آلودگی کادمیم (0، 50 و 100 میلی گرم بر کیلوگرم) و سه سطح آلودگی سرب (0، 100 و 200 میلی گرم بر کیلوگرم) و چهار نوع کلات کننده شاهد، EDTA، کمپوست زباله شهری و کاربرد توأم EDTA و کمپوست زباله شهری اجرا شد. نتایج نشان داد که درسطح آلودگی200 میلی گرم سرب بر کیلوگرم خاک، کلات کننده توأم کمپوست و  EDTAسبب افزایش غلظت بخش هوایی، شاخص جذب و مقدار کل سرب به ترتیب به مقدار 36/2، 83/1 و 13/2 برابر نسبت به شاهد شد و در سطح آلودگی 100 میلی­گرم کادمیم بر کیلوگرم خاک این کلات کننده سبب افزایش غلظت کادمیم بخش هوایی، شاخص جذب و مقدارکل کادمیم به ترتیب به مقدار48/2،03/2 و 11/2 برابر نسبت به شاهد شد. به طور کلی کلات کننده توأم کمپوست زباله شهری وEDTA  سبب بیشترین افزایش غلظت و مقدار عناصر سرب و کادمیم در گیاه نسبت به سایر کلات کننده­ها و شاهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Municipal Solid Waste Compost and EDTA on Phytoremediation of Different Lead and Cadmium Levels by Sunflower

نویسندگان [English]

  • Amir Moslehi 1
  • majid fekri 2
  • Amir Fotovat 3
1 Former Graduate Student, Shahid Bahonar University of Kerman. College of Agriculture. Soil Science Department
2 Associate Professor, Shahid Bahonar University of Kerman. College of Agriculture. Soil Science Department
3 Associate Professor, Ferdowsi University of Mashhad. College of Agriculture. Soil Science Department
چکیده [English]

Heavy metal pollution is one of the most serious environmental problems developing in the entire world. This study was carried out to investigate the effects of Ethylene Diamine Tetra Acetic Acid (EDTA), Municipal Solid Waste Compost (MSWC) and different levels of Pb and Cd in soil on sunflower (Helianthus annuus L.) dry matter, concentration, contents, and uptake index of Pb and Cd. This study was performed in two separate factorial experiments with completely randomized design. Treatments consisted of three levels of Cd (0, 50, and 100 mg/kg of soil) and three levels of Pb (0,100 and 200 mg/kg of soil) with four chelates including blank, EDTA, MSWC, and combined application of MSWC and EDTA. Results showed that in the treatment with 200 mg Pb/kg of soil, combined application of MSWC and EDTA increased concentration of Pb in the shoots of plant, uptake index, and total content of Pb in the plant, respectively, 2.36, 1.83, and 2.13 times, compared to the control. Results also showed that in the treatment with 100 mg Cd/kg of soil, combined application of MSWC and EDTA increased concentration of Cd in shoots of the plant, uptake index, and total content of Cd in plant, respectively, 2.48, 2.03, and 2.11 times, compared to the control. In general, combined application of MSWC and EDTA caused the highest increase in concentration and content of Pb and Cd in plant compared to the control and the other chelate treatments.

کلیدواژه‌ها [English]

  • Ethylene diamine tetra acetic
  • Chelates
  • Heavy metal pollution
  1. چرم، م و علیزاده، آ.1388. بررسی اثرات کمپوست بقایای نیشکر و EDTA (اتیلن دی آمین تترا استیک اسید) در کشت کلزا جهت پالایش خاک­های آلوده به کادمیم، سرب و نیکل. مجله آب و خاک (علوم و صنایع کشاورزی). جلد 23، شماره 2: 29-20.
  2. فتاحی کیاسری، ا.، فتوت، ا.، آستارایی، ع و حق نیا، غ. 1389. اثر اسید سولفوریک و  EDTA بر گیاه پالایی سرب در خاک توسط سه گیاه افتابگردان، ذرت و پنبه. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک. سال چهاردهم، شماره 51: 68-57.
  3. صاحبقدم لطفی، ع.، 1367. متابولیسم سرب و مسمومیت­های ناشی از آن. انتشارات دانشگاه تربیت مدرس، تهران.
  4. Blaylock, M. J., D. E. Dushenkov, O. Zakharov, C. Gussman, Y. Kapullnik, B. D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil- applied chelating agents Environ. Sci. Technol. 31: 860-865.
  5. Bouyoucous, G.J., 1952. A recalibration of hydrometer for making mechanical analysis of soils. Agron. J. 43, 434–438.
  6. Chen, Y., Li, X., Shen, Z. 2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57,187–196.
  7. Gee, G. W., and J. W. Bauder. 1986. Particle- size analysis, hydrometer metode. P. 404-408. In A. Klute et al. (eds.) Methods of Soil Analysis, Part I, 3rd Ed., Am. Soc. Agron., Madison, WI.
  8. Grcman, H., Vodnik, D., Velinkonja-Bolta, S., Leštan, D., 2003. Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J. Environ. Qual. 32, 500–506.
  9. Huang, J.W., Chen, J., Berti, W.R., Cunningham, S.D, 1997. Phytoremediation of lead-contaminated soil: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 3:800–805.
  10. Komarek, M., Tlustos, P., Szakova, J., Chrastny, v. 2008. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils. Environmental Pollution 151: 27-38.
  11. Lin, Q., Chen, Y.X., He, Y.F., Tian, G.M., 2004. Root-induced changes of lead availability in the rhizosphere of Oryza sativa L. Agric. Ecosyst. Environ. 104, 605–613.
  12. Liphadzi, M.S., Kirkham, M.B. 2006. Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids. South African Journal of Botany 72, 391–397.
  13. Luo, C., shen, Z., Lou, S., Li, X. 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59, 1–11.
  14. Madrid, F., Liphadzi, M.S., Kirkham, M.B., 2003. Heavy metal displacement in chelate-irrigated soil during phytoremediation. J. Hydrol. 272, 107–119.
  15. Nascimento, C. W., Amarasiriwardena, D., Baoshan, X. 2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution 140 114-123.
  16. Nelson, R.E. 1982. Carbonate and gypsum. In: Page AL (ed) Method of soil analysis, Part 2, 2nd edn. Agron Monogr. 9. ASA and SSSA, Madison. 181–197.
  17. Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorous in soil by extraction with sodium bicarbonate. USDA. Circ. 939. U. S. Gov. Print. Office, Washington, D. C.
  18. Rhoades JD (1996) Salinity: electrical conductivity and total dissolved solids. In: Sparks DL et al (eds.) Method of soil analysis, part 3. Am Soc Agron, Medison, WI, 417–436.
  19. Rodriguez J.A., Nanos N., Grav J.M., Gil, l. 2008. Multiscale analysis of heavy metal contents in Spanish agriculture topsoils. Chemosphere, 70:1085-1096.
  20. Salt, D.E., Smith, R.D., Raskin, I., 1998. Phytoremediation. Annu. Rev. Plant Phys. Plant Mol. Biol. 49, 643–668.
  21. Shen, Z.G., Li, X.D., Wang, C.C., Chen, H.M., Chua, H., 2002. Lead phytoextraction from contaminated soil with high biomass plant species. J. Environ. Qual. 31, 1893–1900.
  22. Sumner, M. E., and W. P. Miller. 1996. Cation exchange capacity and exchangeable coefficients. P. 1201-1229. In D. Ed. Am. Soc. Agron., Medison, WI.
  23. Thomas GW (1996) Soil pH and soil activity. In: Sparks DL et al(eds.) Method of Soil Analysis, part 3. Am Soc Agron, Madison, WI, 475–490.
  24. Walker, D .J., Celemnte, R., Roig, A., Bernal, M. P. 2003. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils.
  25. Walkley, A., and Black. (1934). an examination of the dehligaroff method for determining organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37; 29-38.
  26. Zhao, S., Lian, F., Duo, L. 2011. EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk. Bioresource Technology 102:621–626.