بررسی و مقایسه اثر منابع و روش‌های مختلف کاربرد نیتروژن بر راندمان مصرف نیتروژن برنج رقم هاشمی

نویسندگان

1 دانشجوی دکترای دانشگاه فردوسی مشهد

2 دانشیار گروه علوم خاک دانشکده کشاورزی دانشگاه فردوسی مشهد

3 استاد گروه علوم خاک دانشکده کشاورزی دانشگاه فردوسی مشهد

4 دانشیار موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

به منظور دستیابی به رهیافتی مؤثر در ارتقای راندمان مصرف کود نیتروژن برنج رقم هاشمی، آزمایشی بر پایه طرح بلوک‌های کامل تصادفی با 13 تیمار و سه تکرار در مزرعه تحقیقاتی معاونت مؤسسه تحقیقات برنج کشور در مازندران (آمل) در سال‌های 1394 و 1395 اجرا شد. تیمارهای آزمایش عبارت بودند از: N0: شاهد (بدون مصرف نیتروژن)، N1: مصرف تقسیطی 2/55 کیلوگرم نیتروژن در هکتار از منبع اوره، N2)، (N3، N4)، (N5 و N6)، (N7 مصرف 2/55 و 6/27 کیلوگرم نیتروژن در هکتار به ترتیب از منابع اوره با پوشش گوگردی، اوره سوپرگرانوله و سولفات آمونیوم و N8: استفاده از نانوکود نیتروژن+ 6/27 کیلوگرم نیتروژن در هکتار از منبع اوره و N9، N10 و N11 به ترتیب استفاده از باکتری آزوسپیریلیوم، ازتوباکتر و آزوسپیریلیوم + ازتوباکتر هر کدام همراه با 6/27 کیلوگرم نیتروژن در هکتار از منبع اوره و N12: مصرف کود عرف زارع (مصرف 2/55 کیلوگرم نیتروژن در هکتار از منبع اوره تماماً قبل از نشاکاری). نتایج آزمایش نشان داد که اثر تیمارها روی صفات مورد اندازه‌گیری به جز محتوای نیتروژن کاه موجب تفاوت معنی‌دار در سطح احتمال پنج درصد شده است. بیشترین عملکرد شلتوک از مصرف 2/55 کیلوگرم در هکتار نیتروژن از منبع سولفات آمونیوم (N6) بدست آمد. عملکرد تیمار N5 (جایگذاری عمقی 6/27 کیلوگرم در هکتار کود اوره سوپرگرانوله) از نظر آماری با تیمار دارای بیشترین عملکرد شلتوک (N6) اختلاف معنی­دار نداشت. بیشترین بهره‌وری نسبی، راندمان زراعی و راندمان بازیافت به تیمار N5 و بیشترین مقادیر راندمان فیزیولوژیک و راندمان داخلی به تیمار N10 اختصاص داشت. بیشترین میزان جذب نیتروژن ) 5/119 کیلوگرم در هکتار( از تیمار N4 بدست آمد. تیمار N5 در مقایسه با تیمار مصرف کود عرف زارع (N12) ضمن صرفه‌جویی 50% در مصرف کود نیتروژن، باعث افزایش 6/4% در عملکرد شلتوک و 4/59% راندمان بازیافت شد. براساس نتایج، مزیت نسبی جایگذاری عمقی کود اوره سوپرگرانوله در افزایش راندمان کود از طریق افزایش میزان جذب نیتروژن و جلوگیری از اتلاف نیتروژن نسبت به سایر منابع تأمین‌کننده نیتروژن بیشتر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation and Comparison of the Effects of Different Application Methods and Sources of Nitrogen on Nitrogen Use Efficiency of Hashemi Rice Variety

نویسندگان [English]

  • Mohammad Mohammadian 1
  • Alireza astaraei 2
  • Amir Lakzian 3
  • Hojjat Emami 2
  • M. Kavoosi 4
1 PhD. student, Department of Soil Sciences, Ferdowsi University of Mashhad
2 Associate Professor, Department of Soil Sciences, Faculty of Agricultural - Ferdowsi, University of Mashhad
3 Professor, Department of Soil Sciences, Faculty of Agricultural - Ferdowsi, University of Mashhad
4 Associate Professor of Rice Research Institute of Iran, Agricultural Research, Eductin and Extenson Organization (AREEO) Rasht, Iran
چکیده [English]

In order to achieve an effective approach to improve nitrogen use efficiency in rice, a field experiment was conducted based on randomized complete block design with three replications and 13 treatments on a local rice variety, namely, Hashemi, in Rice Research Institute of Iran (Amol) during 2015 and 2016. The treatments included: N0: no N, N1: split application of 55.2 kg ha-1 N from source of urea (recommended for Hashemi variety), (N2, N3), (N4, N5) and (N6, N7) application of 55.2 and 27.6 kg ha-1 N from SCU, USG and AS sources, respectively; N8: application of nitrogen  nanofertilizer; N9, N10 and N11: application of Azospirillium, Azotobacter, and Azospirillium + Azotobacter. In addition to the mentioned sources, in N8 to N11 treatments, 27.6 kg ha-1 N from urea was used. N12: Farmers’ fertilizer practice (Pre planting application of 55.2 kg ha-1 N from urea). Results of the experiment showed that the effect of treatments on the measured traits, except nitrogen content of straw, caused a significant (p<0.05) difference. The highest grain yield was obtained from N6 (4542 kg ha-1). The performance of N5 (deep placement of 27.6 kg ha-1 Nfrom source of USG) was not significantly different from the treatment with the highest grain yield (N6). The highest amount of PFP, AEN and REN was obtained from N5 treatment and the highest PEN and IEN[H1]  was obtained from N10. N5 increased grain yield by 4.6% and recovery efficiency by 59.4% in compared to N12. The highest amount of N uptake (119.5 kg ha-1) was obtained from N4 treatment. Based on the results, it could be concluded that the deep placement of USG fertilizer has relative advantage compared to other N supplying sources because of enhanced amount of N uptake and reduced N losses.



 [H1]Please define these symbols.

کلیدواژه‌ها [English]

  • Deep placement
  • Free-living nitrogen fixing bacteria
  • Slow release fertilizer
  1. بی‌نام .1391. بررسی کودهای زیستی، موسسه تحقیقات خاک و آب، نشریه فنی، کرج.
  2. عرفانی‌مقدم، ر.، ع. ر. نبی‌پور و م. ز. نوری. 1397. دستورالعمل تولید برنج سالم در شرایط کشاورزی پایدار. سازمان تحقیقات، آموزش و و ترویج کشاورزی، معاونت ترویج، نشر آموزش کشاورزی، 318 صفحه.
  3. علی‌احیایی، م. و ع. ا. بهبهانی‌زاده. 1376. شرح روش‌های تجزیه شیمیایی خاک (جلد دوم)، موسسه تحقیقات خاک و آب، نشریه فنی شماره 102، 115 صفحه.
  4. میرنیا هریکنده‌ای، سیدخلاق. 1375. بررسی کاربرد مدل انتقال نیترات و بیلان مصرف ازت در شالیزار (آمل). پایان‌نامه دکترای خاکشناسی، دانشگاه تربیت مدرس، تهران، ایران.
  5. Abou-khalifa, A.A.B. 2012. Evaluation of some rice varieties under different nitrogen levels. Advances in Applied Science Research, 3 (2):.1144-1149.
  6. Agrawal, S. and P. Rathore. 2014. Nanotechnology Pros and Cons to Agriculture: A Review, International JournalCurrent Microbiology Appied Science, 3 (3): 43-55.
  7. Alam, M. M., M. R. Karim and J. K. Ladha. 2013. Integrating best management practice for rice with farmers’ crop management techniques: A potential option for minimizing rice yield gap. Field Crops Research. 144: 62-68.
  8. Baligar, V.C and N. K. Fageria. 2015. Nutrient Use Efficiency in Plants: An Overview. In: Rakshit, A., H. B. Singh, and A. Sen. (Eds). 2015. Nutrient Use Efficiency: from Basics to Advances, p. 415, Springer New Delhi, India.
  9. Cassman, K. G., A.R. Dobermann, D. T. Walters. 2002. Agroecosystems, nitrogen-use efficiency and nitrogen management. AMBIO: A Journal of the Human Environment, 31(2):.132-140.
  10. Cassman K.G., G. C. Gines, M.A. Dizon, M. I. Samson, J. M. Alcantara. 1996. Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen. Field Crops Research, 47 (1):.1-12.
  11. Catchpoole, V. R., D. J. Oxenham, L.A. Happer. 1983.Transformation and recovery of urea applied to a grass pasture in south-eastern Queensland. Australian Journal of Experimental Agriculture, 23 (120):.80-86.
  12. Choudhury, A. T. M. A. and I. R. Kennedy. 2005. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Communications in Soil Science and Plant Analysis, 36 (11-12):.1625-1639.
  13. Crassewell, E. T. and S.K. De Datta.1980. Recent developments in research on nitrogen fertilizers for rice. Soil and Fertilizer Forum of Thailand.
  14. Dastan, S., D., M. Siavoshi, D. Zakavi, A. Ghanbari-malidarreh, R.Yadi, E.Ghorbannia Delavar, A. R. Nasiri. 2012. Application of nitrogen and silicon rates on morphological and chemical lodging related characteristics in rice (Oryza sativa L.) at North of Iran. Journal of agricultural science, 4 (6): 1-5.
  15. Dobermann, A., and T. Fairhurst. 2000. Rice: Nutrient disorders and nutrient management. IRRI & PPI & PPIC, Makati City & Singapore.
  16. Fageria, N. K., A. B. Dos Santos and M. F. Morales.2010. Influence of Urea and Ammonium Sulfate on Soil Acidity Indices in Lowland Rice Production. Communications in Soil Science and Plant Analysis, 41 (13):1565–1575.
  17. Fageria N. K., V. C. Baligar .2005. Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy, 88: 97–185.
  18. Fan, M., J. Shen, L. Yuan, R. Jiang, X. Chen and W. J. Davies. 2012. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of experimental botany, 63 (1):.13-24.
  19. FAO .2013. Food and Agricultural Organization. FAOSTAT. http://faostat.fao.org/Rome.
  20. Ghaffari, H., A. Gholizadeh,A. Biabani,A. Fallah ,and M. Mohammadian. 2018. Plant Growth Promoting Rhizobacteria (PGPR) Application with Different Nitrogen Fertilizer Levels in Rice (Oryza sativa L.). Pertanika J. Trop. Agr. Sci. 41: 701-714.
  21. IRRI.2013. Standard Evaluation System (SES) for rice. 5th edition. Manila, Philippines. p. 55.
  22. Jarrell, W. M. and R. B. Beverly.1981. The dilution effect in plant nutrition studies. Advances in Agronomy, 34 (1): 197-224.
  23. Kant, S., Y. M. Bi, S. J. Rothstein, 2011. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany 62 (4): 1499–1509.
  24. Khalil, M.I., U. Schmidhalter, R. Gutser and H. Heuwinkel. 2011. Comparative efficacy of urea fertilization via supergranules versus prills on nitrogen distribution, yield response and nitrogen use efficiency of spring wheat. Journal of plant nutrition, 34(6): 779-797.
  25. Koumeleh, A.S., P.Sharmila, D. C. Uprety and P. P. Saradhi, 2007. Impact of elevated CO2 on nutrient uptake of rice cultivars (Oryza sativa L.). Indian Journal of Crop Sciences, 2 (1): 87-90.
  26. Kraiser T, D. E. Gras, A. G. Gutierrez, B. Gonzalez, R. A. Gutierrez. 2011. A holistic view of nitrogen acquisition in plants. Journal of Experimental Botany, 62 (4):1455-1466.
  27. Kumar R., B. S. Parmar, S. Walia, and S. Saha .2015. Nitrification inhibitors: classes and its use in nitrification management. In: Rakshit, A. Singh, H. B. Sen, A. (Eds). 2015. Nutrient Use Efficiency: from Basics to Advances, pp. 103-122, Springer New Delhi, India.
  28. Montzka, S., E. Dlugokencky, J. Butler .2011. Non-CO2 greenhouse gases and climate change. Nature 476: 43–50.
  29. NAAS. 2005. Policy option for efficient nitrogen use. Policy Paper No. 33, National Academy of Agricultural Sciences, New Delhi, India.
  30. Peng, S., R. J. Buresh, J. Huang, X. Zhong, Y. Zou, J. Yang, G.Wang, Y. Liu, R. Hu, Q. Tang, K. Cui, F. Zhang, A. Dobermann. 2010. Improving nitrogen fertilization in rice by site-specific N management. Agron. Sustain. Dev. 30: 649–656.
  31. Peng S., R. J.Buresh, J. Huang, J. Yang, Y. Zou, X. Zhong, G. Wang, F. Zhang.2006. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China, Field Crops Research. 96 (1): 37–47.
  32. Prasad, P., .2013. Fertilizer nitrogen, food security, health and the environment. World, 16: 14-16.
  33. Redfern, S. K., N. Azzu and J. S. Binamira. 2013. Rice in Southeast Asia: facing risks and vulnerabilities to respond to climate change. Building Resilience for Adaptation to Climate Changes. In the Agricultural Sector. 23, p.295.
  34. Roberts, T. L., 2008. Improving nutrient use efficiency. Turkish Journal of Agriculture and Forestry, 32 (3): 177-182.
  35. SAS Institute. 1998. SAS/STAT user,s guide. Release 6.03. SAS Institute, Cary. NC.
  36. Sheng-guo, C., Z. Bing-qiang, L. Yan-ting, Y. Liang, L. Wei, L. Zhian, H. Shu-wen and S. Bing. 2015. Review grain yield and nitrogen use efficiency in rice production regions in China. Journal of Integrative Agriculture, 14 (12): 2456–2466.
  37. Savant, N.K. and Stangel. 1990. Deep placement of urea supergranules in transplanted rice: principles and practices. Fertilizer research, 25(1), pp.1-83.
  38. Tayefe, M., A. Gerayzade, E. Amiri and A. Nasrollah Zadeh.2011. Effect of nitrogen fertilizer on nitrogen uptake, nitrogen use efficiency of rice. IPCBEE vol.24 .IACSIT Press, Singapoore.
  39. Wang, G.,A. Dobermann,C. Witt,Q. Sun ,and R. Fu. 2001. Performance of site-specific nutrient management for irrigated rice in southeast China. Agrony. Journal, 93: 869-878.