مقایسه اثرات باقیمانده کودهای گوسفندی و گاوی بر برخی صفات کمی و کیفی گندم پائیزه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش، بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

2 دانشیار پژوهش، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

کودهای حیوانی منابع آلی ارزشمندی برای افزایش ماده آلی خاک و تغذیه محصولات زراعی می­باشند. به­منظور بررسی اثرات باقیمانده دو نوع کود حیوانی بر رشد و عملکرد گندم پائیزه رقم زرین، یک آزمایش مزرعه­ای در ایستگاه تحقیقاتی میاندوآب مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان غربی انجام شد. کودهای حیوانی در سال 1393 مصرف شد. طی مدت سه سال بعد از آن، هیچگونه کودی مصرف نشد و اثرات باقیمانده کودهای حیوانی، در سال­های زراعی 1396 تا 1397 مطالعه شد. تیمارها شامل T1= شاهد، T2=50 تن در هکتار کودگاوی، T3=100 تن در هکتار کودگاوی، T4=50 تن در هکتار کود گوسفندی، و T5=100 تن در هکتار کودگوسفندی در قالب بلوک کامل تصادفی در سه تکرار اعمال گردید. نتایج نشان داد که کود گوسفندی در مقایسه با کود گاوی منجر به تولید محصول بیشتری شد. تیمار T4 نسبت به تیمار شاهد، عملکرد دانه و شاخص برداشت بیشتری به ترتیب به میزان 36% و 17% نشان داد درحالیکه، تیمار T5نسبت به تیمار T4 تفاوت معنی­داری نداشت. بالاترین مقادیر نیتروژن (84/1%)، پتاسیم (41/0%)، منیزیم (12/0%)، آهن(mg.kg-1 40/126)، مس (mg.kg-14/16)، روی (mg.kg-17/45) و منگنز (mg.kg-135/33) در دانه و بالاترین مقادیر پتاسیم (76/1%)، آهن (mg.kg-130/269 )، روی ( mg.kg-116/9) و منگنز (mg.kg-108/24 ) در کلش گندم در تیمار T4 ثبت شد. کربن آلی خاک و قابلیت استفاده عناصر به‌ویژه فسفر، روی و آهن در لایه سطحی خاک در کرت­های تحت تیمارهای کود حیوانی، به‌طور معنی­داری نسبت به شاهد بیشتر بود. قبل از انجام آزمایش، کربن آلی خاک 88/0 درصد بود. پس از برداشت محصول، کربن آلی خاک در تیمارهای T2 و T3 به­ترتیب به 99/0% و 36/1% درصد، و در تیمارهای T4 وT5به­ترتیب به 94/0% و 26/1% افزایش یافتند. با توجه به نتایج این تحقیق، استفاده از کود حیوانی استراتژی عملی مؤثری در تولید بهینه محصول و غنی­سازی گندم به دلیل نقش آن در بهبود حاصلخیزی خاک است.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Sheep and Cow Manures Residual Effects on Some Quantitative and Qualitative Traits of Winter Wheat

نویسندگان [English]

  • Aziz Majidi 1
  • K. Shahbazi 2
1 Assistant Professor, Soil and Water Research Dept., West Azerbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran
2 Associate Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Animal manures are valuable organic sources for soil organic matter and crop nutrition. To evaluate the residual effects of two sources of animal manure on growth and yield of winter wheat (Triticum aestivum L) Zarin variety, a field experiment was conducted at Miandoab Research Station, Agricultural and Natural Resource Research and Educational Center of West Azerbaijan, Iran. Manures were used in 2014. In the next three years, no animal manure was applied. Residual effects of manures were determined during winter growing season of 2017-19. The treatments included T1= control, T2= 50 t ha-1 cow manure, T3= 100 t ha-1 cow manure, T4= 50 t ha-1 sheep manure, and T5= 100 t ha-1 sheep manure and were used in a randomized complete block design (RCBD) with three replications. None of the plots received mineral fertilizers. The results showed that the sheep manure was more efficient than the cow manure. Plots receiving 50 t ha-1 sheep manure showed higher grain yield and harvesting index of 36% and 17%, respectively, compared to control plots, whereas, 100 t ha-1 sheep manure did not show significant yield increase compared to the T4. Significantly higher nitrogen (1.84%), potassium (0.41%), magnesium (0.12%), iron (126.40 mg.kg-1), copper (16.4 mg.kg-1), zinc (45.7 mg.kg-1) and manganese (33.35 mg.kg-1) content in grain and highest potassium (1.76%), iron (269.3 mg.kg-1), zinc (9.16 mg.kg-1) and manganese (24.08 mg.kg-1) content in wheat straw were recorded under treatment T4. The overall results indicate that organic carbon and availability of nutrients, particularly P, Zn, and Fe in the soil surface layer were significantly higher in plots receiving manures compared to the control. Before the experiment, soil organic carbon (SOC) was 0.88%. After harvest, SOC in treatments of 50 and 100 t ha-1  of cow manure increased to 0.99% and 1.36%, and in treatments of 50 and 100 t ha-1 of sheep manure, it increased to 0.94% and 1.26%, respectively. The Results demonstrated that manure application, due to its role in soil fertility improvement, is an effective strategy for efficient production of wheat and enrichment of its grain.

کلیدواژه‌ها [English]

  • Animal manure
  • Soil organic carbon
  • Soil fertility
  • Wheat grain enrichment
  1. امامی، ع. 1375. روش‌های تجزیه گیاه. جلد اول، نشریه شماره 982، موسسه تحقیقات خاک و آب، کرج، ایران.
  2. داودی، م. ح.، ک. شهبازی، م. فیض­اله زاده اردبیلی و ح. رضائی. 1394. روش­های تجزیه کودهای آلی. چاپ اول، موسسه تحقیقات خاک و آب، کرج، ایران.
  3. شهبازی، ک و ع. مجیدی.1396. سینتیک تجزیه مواد آلی در مناطق مختلف آگرواکولوژیکی ایران تحت شرایط مزرعه­ای. گزارش نهائی پروژه تحقیقاتی، شماره 2118، موسسه تحقیقات خاک و آب، کرج، ایران.
  4. Ano, A.O., and J. A. Agwu. 2005. Effect of animal manures on selected soil chemical properties. Nigerian J. Soil Sci. 15: 14–19.
  5. Bloukounon-Goubalan, A. Y., A. Saïdou, N. Obognon, G. L. Amadji, A. M. Igué, V. A.Clottey, and M. Kenis. 2018. Decomposition and nutrient release pattern of animal manures biodegraded by fly larvae in Acrisols. Can. J. Soil Sci., 99(1): 60-69.
  6. Bremner, J. M. 1996. Nitrogen. Total. p.1058-1121. In D. W. Nelson, et al. (Ed.) Methods of Soil Analysis. Part 3. Chemical methods. SSSA, Madison, WI.
  7. Cakmak, I. 2007. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification. Plant Soil. 302: 1-17.
  8. Chan, K. Y., and D. P. Heenan. 2006. The effects of stubble burning and tillage on soil carbon sequestration and crop productivity in Southeastern Australia. Soil Use Manag. 21: 427-443.
  9. Dhaliwal, S. S., R. K Naresh., A. Mandal., R. Singh., and M. K. Dhaliwal. 2019. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Enviro. Sustain. Indica. 1-2: 1-14.
  10. Edmeades, D. 2003. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Ntri. Cycl Agroecosys. 66: 165-180.
  11. Eghball, B., D. Ginting., and J. E. Gilley. 2004. Residual Effects of Manure and Compost Applications on Corn Production and Soil Properties. Agron. J. 96: 442-447.
  12. Farhad, W., M. F. Saleem., M. A. Cheema., and H. M. Hammad. 2009. Effect of poultry manure levels on the productivity of spring maize (Zea mays L.). J. Ani. Plt. Scis. 19(3): 122-125.
  13. Fisher, G. 2008. Micronutrients and animal nutrition and the link between the application of Micronutrients to crops and animal health. Turk. J. Agric. For. 32: 221-233.
  14. Font-Palma, C. 2019. Methods for the Treatment of Cattle Manure-A Review. C-J. Carbon Res. 5(2): 27.
  15. Garg, S., and G. S. Bahl. 2008. Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresour. Technol. 99(13): 5773-5777.
  16. Gee, W.G., and O. Dani. 1996. Particle size analysis. p.475-490. In G. S. Campbell et al. (Eds.) Methods of Soil Analysis. Part 4. Physical methods. SSSA, Madison, WI.
  17. Ghaley, B. B., H. Wösten., J. E. Olesen., K. Schelde., S. Baby., Y. K. Karki., and J. R. Porter. 2018. Simulation of Soil Organic Carbon Effects on Long-Term Winter Wheat (Triticum aestivum) Production Under Varying Fertilizer Inputs. Front. Plant Sci. 9:1158.
  18. Ghimire, R., P. Bista., and S. Machado. 2019. Long-term Management Effects and Temperature Sensitivity of Soil Organi c Carbon in Grassland and Agricultural Soils. Sci. Rep. 9(1): 12151.
  19. Ghosh, P., P. Ramesh., K. Bandyopadhyay., A. K. Tripathi., K. Hati., A. K. Misra and C. Acharya. 2004. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. I. Crop yields and system performance. Bioresour. Technol. 95: 77-83.
  20. Gross, C. D., and R. B. Harrison. 2019. The case for digging deeper: Soil organic carbon storage, dynamics, and controls in our changing world. Soil Syst. 3(2): 28. Retrieved from https://www.mdpi.com/2571-8789/3/2/28
  21. Guo, Z., J. Han., J. Li., Y. Xu., and X. Wang. 2019. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. Plos One. 14(4): e0211163, doi:10.1371/journal.pone.0211163
  22. Halajnia, A., G. H. Haghnia., A. Fotovat and R. Khorassani. 2009. Phosphorus fractions in calcareous soils am ended with P fertilizer and cattle manure. Geoderma, 150: 209-213.
  23. Hammad, H., A. Khaliq., A. Ahmad., M. Gill., A. Malik., W. Farhad., and K. Laghari. 2011. Influence of different organic manures on wheat productivity. Int. J. Agric Biol., 13: 137-140.
  24. Hammed, T. B., E. O. Oloruntoba., and G. R. E. E. Ana. 2019. Enhancing growth and yield of crops with nutrient-enriched organic fertilizer at wet and dry seasons in ensuring climate-smart agriculture. Int. J. Recycl. Org. Waste Agric., 8(1): 81-92.
  25. Hawkesford, M. J. 2017. Genetic variation in traits for nitrogen use efficiency in wheat. J. Exp. Bot., 68(10): 2627-2632.
  26. Helmke, P. A., and D. L. Sparks. 1996. Lithium, Potassium, Rubidium and Cesium, P. 551-574. In D.W. Nelson et al. (Eds.) Methods of Soil Analysis. Part 3. Chemical methods. SSSA, Madison, WI.
  27. Jan, A., Amanullah., and M. Noor. 2011. Wheat response to farm yard manure and nitrogen fertilization under moisture stress conditions. J. Plant Nutr., 34(5): 732-742.
  28. Jing, J., J. T. Christensen., P. Sørensen., B. T. Christensen. and G. H. Rubæk. 2019. Long-term effects of animal manure and mineral fertilizers on phosphorus availability and silage maize growth. Soil Use Manag., 35(2): 323-333.
  29. Kuo, S. 1996. Phosphorous. P. 869-919. In D. W. Nelson et al. (Eds.) Methods of Soil Analysis. Part 3, Chemical methods. SSSA, Madison, WI.
  30. Koutroubas, S., V. Antoniadis., C. Damalas., and S. Fotiadis. 2016. Effect of organic manure on wheat grain yield, nutrient accumulation, and translocation. Agron. J., 108(2): 615-625.
  31. Lal, R. 2015. Restoring soil quality to mitigate soil degradation. Sustainability. 7(5): 5875-5895.
  32. Li, T., H. Zhang., X. Wang., S. Cheng., H. Fang., G. Liu., and W.Yuan. 2019. Soil erosion affects variations of soil organic carbon and soil respiration along a slope in Northeast China. Ecol. Process., 8(1), 28. doi:10,1186/s13717-019-0184-6
  33. Liang, Q., H. Chen., Y. Gong., M. Fan., H. Yang., R. Lal., and Y. Kuzyakov. 2012. Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China Plain. Nutri. Cycl. Agroecosys., 92: 21-33.
  34. Lindsay, W. I., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 42: 421-448.
  35. Loeppert, R. H., and  D. L. Suarez. 1996. Carbonate and gypsum. p. 437-474. In D. W. Nelson, et al. (Eds.) Methods of Soil Analysis. Part 3. Chemical methods. SSSA, Madison, WI.
  36. Loveland, P. J and  J. Webb. 2003. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil Till. Res., 70: 1-18.
  37. Malakouti. M. J. 2011. Towards improving the quality of consumed breads in Iran: A review. Iran. J. Food Sci. Tech., 8(31): 11-21.
  38. Ma, G., Y. Li., Y. Jin., F. Zhai., F. J. Kok., and Y. Xiushan. 2007. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China. Eur. J. Clin. Nutr., 61: 368-374.
  39. Malav, J. K., N. N. Salvi., J. K. Patel., J. R Jat.,. S. Kumar., B. T. Patel., and V. R. Patel. 2019. Nutrient content and uptake by wheat (Triticum aestivum L) as influenced by iron and zinc enriched FYM in salt affected soils of Gujarat. Int. J. Curr. Microbiol. Appl. Sci., 8(6): 2970-2982.
  40. Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p. 539-579. In A. L. Page et al. (eds.). Methods of soil analysis, part 2, Chemical methods. SSSA, Madison, WI.
  41. Oldfield, E. E., M. A. Bradford., and S. A. Wood. 2019. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 5(1): 15-32.
  42. Paustian, K., S. Collier., J. Baldock., R. Burgess., J. Creque., M. DeLonge., M. Jahn. 2019. Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Manag., 10(6): 567-587.
  43. Pourghassem Gargari, B., S. Mahboob., and S. Razavieh. 2007. Content of phytic acid and its mole ratio to zinc in flour and breads consumed in Tabriz, Iran. Food Chem., 100: 1115-1119.
  44. Rajan, G., L. Sushil., S. A. Bharat., B. Prakriti., and  M. S. Upendra. 2017. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. J. Integr. Agric., 16(1): 1–15.
  45. Rasul, G. 2015. Influence of different organic fertilizers on growth and yield of wheat. American-Eurasian J. Agric. Environ. Sci., 15: 1123-1126.
  46. Rhoades, J. D. 1996. Salinity: electrical conductivity and total dissolved solids. p. 417-435. In D. W. Nelson, et al. (Eds.) Methods of Soil Analysis. Part 3. Chemical methods. SSSA, Madison, WI.
  47. Roohani, N., R.Hurrell., R. Kelishadi., and R.Schulin. 2013. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci., 18(2): 144-157.
  48. Ruisi, P., B. Frangipane., G. Amato., A. S. Frenda., A.Plaia., D. Giambalvo., and S. Saia. 2015. Nitrogen uptake and nitrogen fertilizer recovery in old and modern wheat genotypes grown in the presence or absence of interspecific competition. Front. Plant Sci., 6: 185-185.
  49. Shehzadi, S., Z. Shah, and W. Mohammad. 2014. Residual effect of organic wastes and chemical fertilizers on wheat yield under wheat-maize cropping sequence. Soil Environ., 33: 88-95.
  50. Thomas, C. L., G. E. Acquah., A. P. Whitmore., S. P. McGrath., and S. M. Haefele. 2019. The Effect of different organic fertilizers on yield and soil and crop nutrient concentrations. Agron. J., 9(12): 776. doi.org/10.3390/agronomy9120776
  51. Thomas, G. W. 1996. Soil pH and soil acidity. p. 475-490. In D.W. Nelson et al. (Eds.) Methods of Soil Analysis. Part 3. Chemical methods. SSSA. Madison, WI.
  52. Uwah, D., G. Ukoha., and J. Iyango. 2012. Okra performance and soil and water conservation as influenced by poultry manure and organic mulch amendments. J. Food Agric. Environ., 10: 748-754.
  53. Wang, G., Z. Luo., P. Han., H. Chen., and J. Xu. 2016. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems. Sci. Rep., 6(1): 19327. doi:10.1038/srep19327
  54. Weil, R., and F. Magdoff. 2004. Significance of soil organic matter to soil quality and health. p. 1-43. In F. Magdoff and Ray. R. Weil (Eds.) Soil organic matter in sustainable agriculture. Advances in Agroecology, CRC Press.